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Abstract: We have studied the alkaline hydrolysis of
p-nitrophenylmethylphosphate (p-NPmP) in aqueous solu-
tion by means of polarizable continuum models and by
hybrid quantum-mechanical/molecular-mechanical (QM/
MM) methods. The theoretical predictions of kinetic isotope
effects (KIEs) are in very good agreement with the
experimental data, confirming a concerted asynchronous
molecular mechanism. In addition, comparison of high level
DFT theory with semiempirical AM1/d Hamiltonian has
allowed checking the reliability of the later to be used in
modeling very large molecular models containing phos-
phorus atoms.

Phosphate esters are fundamental molecules in cellular
chemistry.1 Hydrolysis of the phosphorus-oxygen bond of
phosphate esters occurs in biochemical processes including
energy storage, biosynthesis or replication of genetic material.2

The kinetic stability of the phosphorus-oxygen bond in aqueous
solution imposes the use of enzymes to reach these chemical
rates compatible with life.3 Thus, to know how enzymes that
catalyze these processes (such as kinases, ATPases, and phos-
phatases) work, it would be interesting to understand the reaction
in solution, which is the reference reaction to estimate the
performance of these catalysts.

Phosphate esters alkaline hydrolysis may proceed, in principle,
with different reaction mechanisms:2 (i) a SN1 dissociative
mechanism in which departure of the leaving group originates
a metaphosphate intermediate, followed by nucleophilic attack
(DN + AN), (ii) an associative mechanism in which nucleophilic
attack preceeds the leaving group departure, originating a
pentacoordinate intermediate (AN + DN), or (iii) through a
concerted path in which bond breaking and bond forming take
place in a single chemical step (ANDN). Experimental studies
based on kinetic isotope effects (KIEs) on phosphate diesters
hydrolysis in alkaline solution suggest that this process takes
place through a ANDN mechanism.4,5 Theoretical studies dem-
onstrated that the mechanism becomes more dissociative as the
pKa value of the leaving group is reduced, both for mono- and
diesters.6,7

Molecular simulations, compared to experimental measure-
ments of KIEs, provide the adequate framework to elucidate
the reaction mechanisms in different environments. In this work,
the hydrolyses of p-nitrophenylmethylphosphate (p-NPmP) (see
Scheme 1) in aqueous solution has been studied by means of
the polarizable continuum model (PCM)8 and by means of
hybrid quantum mechanics/molecular mechanics (QM/MM)
methods.9 In the former, the solvent molecules are described
by means of a dielectric continuum and polarizable medium,
characterized by a dielectric constant using the Gaussian 03
package of programs.10 In QM/MM methods, solvent molecules
are described explicitly with a box of 55.8 Å side water
molecules treated by TIP3P11 potentials as implemented in
DYNAMO library.12

Keeping in mind that PCM models describe quite accurately
homogeneous environment effects, such as aqueous solutions,13
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Figure 1. PMF obtained for the hydrolysis of p-nitrophenyl-
methylphosphate (p-NPmP) obtained at AM1/MM level at 25
°C (blue line) and at AM1d/MM level at 25 and 95 °C (green
and red lines, respectively).
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B3LYP density functional theory (DFT) functional, within the
6-31+G* basis set, was used for the PCM optimizations and
frequency calculations, while electronic energy was further
refined by means of single point calculations using the
6-311++G** basis set. These results will be used as the
reference for comparison with QM/MM calculations with low-
level QM methods. QM region on these calculations were
described with the AM1 Hamiltonian,14 which is known to not
be a sufficiently accurate to model reactions involving phos-
phorus atoms because it does not incorporate d orbitals, as
demonstrated by Marcos et al.15 in a deep comparison study
between different semiempirical methods on pentacordinated
phosphorus TSs involving reactions in gas phase. For this reason,
the new AM1/d-PhoT Hamiltonian (hereafter simply named as
AM1d)16 was also used to describe the QM region. Thus,
reactants, transition state (TS) and productlike structures have
been localized in the PCM approach at 25 °C, as the reference
temperature, and 95 °C, the temperature at which the experi-
mental KIEs for this reaction had been measured.4 These
calculations have been done at the B3LYP(PCM) level by
changing the dielectric constant of the solvent from 78.5 to
56.1.17 Once the TS was localized in the continuum medium,
this was used as initial structure to equilibrate the solvent in
the QM/MM simulations (both using the AM1 and AM1d
methods). The system was relaxed by means of 250 ps of
Langevin Dynamics using the NVT ensemble at the two
temperatures. A total of 5816 water molecules were present in
the 55.8 Å side cubic box at 298 K, while at 368 K only 5576
water molecules were included to have the correct density. The
time step employed in all the simulations was 1 fs.

Starting from these structures, the free energy profile of the
reaction was then obtained in terms of the potential of mean
force (PMF) with the antisymmetric combination of distances
defining forming and breaking bond, RCdd(P-OpNPmP)-
d(P-OOH), as the distinguished reaction coordinate (negative
values correspond to reactants and positive values to products).
The different values of the reaction coordinate sampled during
the simulations were pieced together by means of the weighted
histogram analysis method (WHAM)18 to construct the full
distribution function from which the PMFs were obtained. The
value of the force constant used for the harmonic umbrella
sampling was 2500 kJ mol-1 Å-2. Each window consisted of

10 ps of equilibration, followed by 15 ps of production, using
two reference temperatures of 25 and 95 °C. Resulting PMFs
are depicted in Figure 1, while activation free energies and
distances defining breaking and forming bonds at the TS are
reported in Table 1. It must be pointed out that the free energy
barriers were computed as free energy difference between the
TS and the fully solvated separated reactants plus a correction
at standard concentration 1M,19 while averaged bonds lengths
were obtained from the 15 ps of MD production.

Geometrical and energetic results obtained at 25 °C employ-
ing the B3LYP(PCM) and the AM1d/MM methods are in
reasonable agreement (see Table 1). Both computational levels
describe a concerted but asynchronous mechanism for the
hydroxide attack to the phosphate diester. As a reference, we
also computed the free energy change associated to the comp-
lete breaking of the P-OpNPmP bond at the B3LYP(PCM) level.
The resulting free energy at 25 °C is 30.4 kcal/mol, substantially
higher than the free energy barriers obtained for the concerted
mechanism. We also tried to explore an AN + DN mechanism
through a pentacoordinated phosphorus species. However it was
not possible to locate such a structure either as a minimum or
as TS. We have estimated that the free energy cost associated
to reaching this quadratic region is about 34 kcal/mol, also
higher than the free energy barrier obtained in our proposed
concerted mechanism. Thus the ANDN mechanism seems to be
more likely for this reaction than the DN + AN or the AN + DN

one. This finding is in agreement with a previous work.6 The
AM1/MM method describes a too early TS, a larger forming
bond and a shorter breaking bond. As a consequence, and in
accordance with the Hammond postulate, the free energy barrier

Scheme 1

Table 1. Distances (in Å) Defining Breaking and Forming Bonds at the TS Obtained at Two Different Temperatures with the
PCM Model and with the Explicit QM/MM (Values Are Reported As Average)a

B3LYP(PCM) AM1/MM AM1d/MM

25 °C 95 °C 25 °C 25 °C 95 °C

d(P-OOH) 2.516 2.517 2.913 ( 0.058 2.233 ( 0.057 2.403 ( 0.076
d(P-OpNPmP) 1.851 1.853 1.663 ( 0.036 1.813 ( 0.047 1.858 ( 0.068
∆Gc

0,q 23.2 25.1 10.3 20.5 21.6
∆Gc

0,q (exptl) 25.9b

a Free energies of activation are reported in kcal mol-1. b Experimental value was obtained at 42 °C from ref 20.

Table 2. B3LYP(PCM) and AM1d/MM Primary 18O KIE,
Secondary 18O KIE, and Secondary 15N KIE for the
Hydrolysis of p-NPmP in Solution at 95 °C

B3LYP
(PCM) AM1d/MM experimental

(k16O/k18O)p-NPmP 1.0047 1.0044 ( 0.0033 1.0059 ( 0.0005a

(k16O/k18O)OH 1.0238 1.0125 ( 0.0054 1.0227 ( 0.0100b

(k16O/k18O)ne,p-NPmP 0.9977 0.9966 ( 0.0032 0.9949 ( 0.0006a

(k16O/k18O)p-NPmP 1.0029 1.0003 ( 0.0020 1.0016 ( 0.0002a

a Values obtained from ref 4, measured at 95 °C. b Value
obtained from ref 5. See ref 22.
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appears dramatically smaller, as observed in Figure 1 and in
values reported in Table 1. Comparison with experimental
barrier obtained by Zalatan et al. at 42 °C,20 seems to indicate
that AM1d/MM calculations render much more reliable data
than using the standard AM1 semiempirical method. This result
is in accordance with inherent limitations on the later to properly
describe phosphorus atoms.

The results obtained at 95 °C computed at B3LYP(PCM) and
AM1d/MM levels were also in good agreement, confirming the
reliability of the AM1d semiempirical Hamiltonian. Both
methods describe also a similar reaction mechanism, although
the transition structures are slightly more dissociative than at
25 °C. The increase of the activation free energy with the
temperature is caused by a diminution of the dielectric effect,
which shields the electrostatic repulsion between the reacting
fragments and to the negative sign of the activation entropy
characteristic of association processes.

To confirm the nature of the molecular mechanism of the
reaction, the effects of isotopic substitutions upon the kinetics
(KIE) of the hydrolysis of p-NPmP in solution have been
computed and compared with available experimental data
reported in the literature.4,5 In particular, primary 18O KIE for
substitution at oxygen atom of nucleophile and leaving group,
(k16O/k18O)OH and (k16O/k18O)p- NPmP, respectively, secondary 18O
KIE for substitution at the two nonether phosphorus oxygen
atoms, (k16O/k18O)ne,p-NPmP, and secondary 15N KIE for substitution
at nitrogen atom of nitro group of leaving group, (k14N/k15N)p-

NPmP, have been computed. Calculations have been done within
the B3LYP(PCM) and AM1d/MM methods at 95 °C with the
CAMVIB/CAMISO programs.21 The results, reported in Table
2, were obtained with the rigid-rotor/harmonic-oscillator ap-
proximation by computing the Hessian of the atoms correspond-
ing to the full solute as depicted in Scheme 1. For the AM1d/
MM values, ten different structures of the transition and reactants
states were optimized as first-order saddle points and minima
on the QM/MM potential energy surface (PES). These were
obtained starting from different configurations of the respective
MD productions. These QM/MM calculations were carried out
with DYNAMO keeping frozen all atoms far from a sphere of
22 Å centered on the solute. Computed KIEs were obtained as
an average over these structures.

The analysis of data reported in Table 2 shows that both
B3LYP(PCM) and AM1d/MM methods predict the same kind
of KIEs: normal primary 18O KIEs, slightly smaller for the
labeling at the leaving group position, and inverse secondary
18O KIEs, which is in accordance with other measurements of
secondary KIEs for SN2 reactions. Both methods also render
small secondary 15N KIE on the nitro group at para position of
the ring. Thus, the AM1d/MM method seems to be a promising
approach to study chemical reactions involving phosphorus
atoms in complex environments, such as solutions or enzymes,
with the evident advantage of being much less computing
demanding than high level DFT methods.

Finally, it can be observed that theoretical predictions are in
very good agreement with the experimental data, thus giving
credit to the proposed molecular mechanism, a concerted but
asynchronous associative hydrolysis of the pNPP in solution.
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Abstract: The time-dependent scattering of a wave packet from a Gaussian barrier is
investigated computationally in the complex z-plane. The initial wave packet and the potential
energy are obtained through analytic continuation from functions specified on the real-axis. The
wave packet is then propagated on the two-dimensional grid. For a low initial wave packet energy,
the time evolution is followed by plotting the following functions: |ψ(z,t)|, real(ψ(z,t)), and the
quantum momentum function (QMF), p(z,t). In the reflected packet, an important role is played
by ripples (quasi-nodes) forming above the real axis. As these quasi-nodes move down across
the real axis, they are ‘detected’ as ‘interference oscillations’ in the density. In contrast, the
component of the packet below the real axis makes a significant contribution to the transmitted
packet. Vector maps of the QMF show hyperbolic flow around quasi-nodes and counterclockwise
circular flow around transient stagnation points, where the QMF vanishes. However, when the
Pólya vector field (defined by P(z,t) ) p*(z,t)) is plotted, circular counterclockwise flow is obtained
near the quasi-nodes. The real and imaginary parts of the quantum action function S(z,t) are
plotted and the vorticity, defined by the curl of the Pólya field, is used to pinpoint regions of
nonanalyticity in the QMF.

1. Introduction

The scattering of a wave packet from a barrier in one-
dimension has been investigated computationally since the
mid-1960s. Excellent examples are shown in the animations
accompanying the book Visual Quantum Mechanics.1 In
studies of this type, the single coordinate (x) is invariably
real-valued. In what may seem a bizarre extension, in the
present study this coordinate will be replaced by the complex
coordinate z, and analysis will be performed on the ‘ex-
tended’ 2D scattering problem in the complex plane. The
outcome will be that an observer confined to the real axis
will detect only a fraction of the rich dynamics ensuing in
the complex plane. However, before getting to this, we need
to address the following question: Why study quantum
dynamics in the complex plane.

The current investigation was motivated by recent studies
using approximate complex-Valued quantum trajectories to
solve the time-dependent Schrodinger equation for barrier
scattering problems. Complex-valued classical trajectories

were introduced in the early years of quantum mechanics to
deal with the turning point connection problem in WKB
theory,2,3 and in the early 1970s, trajectories of this type
were used for classically forbidden processes.4-8 In 1987,
Huber and Heller9 generalized the real-space version of
Gaussian wave packet dynamics10 to allow for the propaga-
tion of complex-valued classical trajectories. An alternative
WKB-type formulation employing complex classical trajec-
tories has also been described.11

When it comes to complex quantum trajectories, the
developments are much more recent. These trajectories
provide a method for solving the quantum Hamilton-Jacobi
equation (QHJE), which is obtained from the Schrodinger
equation through use of the ansatz, ψ(x,t) ) exp [iS(x,t)/p]
(see the text by Tannor12). The complex action function,
S(x,t), is the solution to the QHJE. With the guidance
condition, p(x,t) ) ∂S(x,t)/∂x, and the dynamical equation
dx(t)/dt ) p(x,t)/m, we are led to trajectories with complex
Values for both x and p (the time remains real-valued).

With the restriction that the wave function is known in
advance, it is very informative to analyze and plot complex* Corresponding author e-mail: barowland@gmail.com.
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quantum trajectories. Over the past six years, for the
stationary state case, quantum trajectories have been ana-
lyzed and plotted for bound state and scattering problems.13-19

A detailed analysis of complex quantum trajectories for
several one-dimensional stationary state scattering problems
has recently been presented.20,21 In addition, quantum
trajectories have recently been analyzed for several nonsta-
tionary problems.20,22

For nonstationary problems where the wave function is
not known in advance, there have been significant develop-
ments23-31 on the use of real-Valued quantum trajectories
for solving the QHJE. In contrast to these developments
concerning real-valued quantum trajectories, the use of
complex Valued quantum trajectories for solving the QHJE
is at an earlier stage of development. In 2006, Tannor and
co-workers derived equations of motion for approximate
quantum trajectories evolving in complex phase space.32

(Interesting commentary on this work has been presented.33,34)
This method was applied to the one-dimensional scattering
of a wave packet from an Eckart barrier,32,35 and it has been
used to describe interference oscillations in the reflected wave
packet and to deal with the node problem.36,37

In order to enhance our understanding of quantum dynam-
ics in the complex plane, we will study the scattering of an
initial Gaussian wave packet from a complex potential
surface on a two-dimensional computational grid. Prior to
this work, the exact dynamics of wave packet barrier
scattering has not been studied in the complex plane. Some
new physical results will arise in this and the following paper,
which deals with the dynamics of exact quantum trajectories.
Some of these new results include the formation of transport
of a string of quasi-nodes away from the barrier region, the
twisting of trajectories launched from different initial posi-
tions around stagnation curves that form between the quasi-
nodes, and the twisting of Pólya vectors around these quasi-
nodes. Understanding the exact dynamics may lead to
improved methods for propagating approximate quantum
trajectories, especially for the reflected wave packet.

The computational strategy mentioned above appears
problematic because the amplitude of the wave function
becomes very large even for small departures from the real
axis. In order to mitigate the effect of these large values, it
is necessary to periodically damp the wave packet near the
edges of the grid. This approach leads to stable and
reproducible results within a subspace of the computational
grid termed the ‘viewing window’. The resulting dynamics
is then followed by plotting, for a number of time steps, the
real part of the wave function and vector maps of the
quantum momentum function (QMF). This function is
defined by

p(z, t)) p
i

1
ψ(z, t)

∂ψ(z, t)
∂z

(1)

Interesting dynamical features are revealed when this com-
plex function is plotted as a set of vectors, pb(z,t) )
[pr(z,t),pi(z,t)], emanating from points in the complex plane.
The imaginary component of this vector is responsible for
‘vertical’ transport orthogonal to the real axis. Two special
points are of interest: poles in the QMF occur at nodes where

ψ(z,t) ) 0, and the QMF becomes zero at stagnation points
where dψ(z,t)/dz ) 0 (andψ(z,t) * 0). In addition, for the
barrier scattering problem described in this study, the QMF
exhibits hyperbolic flow around quasi-nodes in the density21

(these are local minima where the amplitude becomes small
but does not reach zero). In order to analyze this flow, the
Pólya vector field is introduced,38-40 and maps of this field
show circular counterclockwise flow around quasi-nodes and
hyperbolic flow around stagnation points. In addition to these
fields, the vorticity of the Pólya field will be shown for the
reflected wave packet.

The remainder of this study is organized as follows. The
scattering problem and the computational grid are set up in
section 2, and computational aspects are discussed in section
3. Plots illustrating wave packet evolution in the complex
plane are presented in section 4. Maps showing the quantum
momentum field are described in section 5, and properties
of the Pólya vector field (including the vorticity) are
presented in section 6. The real and imaginary parts of the
quantum action function are described in section 7. Finally,
a summary appears in section 8.

2. Scattering Problem and Computational
Grid

The initial wave packet in the complex plane is obtained
through analytic continuation of a Gaussian defined on the
real axis. The resulting complex function is

ψ(z))Ne-�(z - z0)2
eik0(z-z0) (2)

where the initial translational energy is E ) p2k0
2/(2m). This

function is centered at the point z0 ) (x0,0) and is normalized
only for integration along the real axis. The normalization
factor is N ) (2�/π)1/4. The complex-valued Gaussian barrier,
centered on the real axis at the point zb ) (xb,0), is given by

VG(z))V0e
-γ(z - zb)2

(3)

Both ψ(z)and VG(z) possess essential singularities when
yf ( ∞.

Both ψ(z)and VG(z) have very large magnitudes for points
off the real axis, and this presents a significant challenge
for the computational investigation of wave packet scattering
in the complex plane. (To illustrate how bad the situation
is, let � ) 6 in eq 2. Then, for points fairly close to the real
axis, for example z ) (x0, (3), the Gaussian function exp
(-�z2) has about the same magnitude as Avogadro’s
number!) We will assume that the dynamics relatively close
to the real axis is of paramount concern. So, in order to
propagate the wave packet on a relatively small two-
dimensional computational grid, the packet will be damped
or absorbed near the boundaries. However, even if the initial
packet is damped, the propagated packet will eventually
scatter from the boundaries at later times. For this reason, at
later times, damping functions and absorbing potentials will
be utilized.

In order to implement this procedure, damping functions
are introduced near all four boundaries of the 2D computa-
tional grid. First, the damping kernel along the x coordinate,
for example, is defined by
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d(a, b;x)) [1+ tanh(a(x- b))] ⁄ 2 (4)

This function takes the following limits:

df 0 for x, b
df 1 for x. b

and df 1 ⁄ 2 for x) b

In addition, with a sign change for a, the function d(-a,b;x)
takes the following limits:

df 1 for x, b
df 0 for x. b

The product of the two functions d(a,b1;x) and d(-a,b2;x)
(for b1<b2) gives a box function with rounded edges for
which the value is essentially zero except when b1 < x <
b2. In the latter region, this function takes the value unity.
Raising this function to a (positive) power then gives a
function which damps to zero very rapidly outside of the
‘internal’ region between b1 and b2. This function is defined
by

D(a, n, b1, b2;x)) [d(a, b1;x)d(-a, b2;x)]n (5)

For brevity, this function will be denoted D(x). The
parameters a and n can be used to control how rapidly D(x)
drops to zero.

Since both ψ(z) and VG(z) become very large away from
the real axis, each function was multiplied by damping
functions along the y coordinate prior to the time propagation.
As a result, the damped initial wave function and potential
are given by

ψD(z))D(y) ·ψ(z)

VD(z))D(y) ·VG(z) (6)

Damping was not applied in the x direction since these two
functions are relatively localized in this direction.

As the wave packet advances in time, parts of it will
eventually scatter from the edges of the computational grid.
In order to confine the wave packet and prevent edge
reflection at later times, two approaches were used. The first
method is to repeatedly damp the wave function near the
four boundaries of the grid. For this purpose, a two-
dimensional damping function was applied every M time
steps. This damping function is defined as product of the
one-dimensional damping functions, D(x)D(y).

Another approach may also be used to confine the
spreading wave packet and prevent edge reflections. For this
purpose, negative imaginary absorbing potentials41,42 are
introduced. In this case, most of the amplitude entering
boundary regions near the edges of the grid is absorbed,
although some edge reflection is hard to avoid. The damping
functions defined earlier can be used to construct the
absorbing potentials. We first note that the function (1 -
D(x)) gives a ‘well’ with rounded edges. Within the internal
region (b1 < x < b2), this function is zero, and outside of
this region it takes on the value one. Along the x coordinate,
the absorbing potential, a negative imaginary function, is then

Vabs(x))-iVax(1-D(x)) (7)

where the parameter Vax controls the strength of the absorber.
The total potential on the computational grid is then the sum

of the damped Gaussian potential in eq 6 added to absorbing
potentials along the x and y directions:

V(z))VD(z)- iVax(1-D(x))- iVay(1-D(y)) (8)

Parameter values will now be specified (all values are in
atomic units). First, the computational grid extends from xmin

) 0 to xmax ) 16 and from ymin ) -3 to ymax ) 2. There are
Nx ) 351 and Ny ) 251 grid points along the two coordinates.
The initial wave packet is centered at z0 ) (6,0), the width
parameter is � ) 6, and the mass is m ) 2000. The damping
parameters used for this function are a ) 10, b1 ) -1.7, b2

) 1.4, and n ) 6. The barrier is centered at zb ) (9,0), the
width parameter is γ ) 4, and V0 ) 0.035. The damping
parameters used for the potential are a ) 6, b1 ) -2.2, b2

) 1.4, and n ) 6. The absorbing potential parameters are
Va x ) 5 and Va y ) 1. The parameters for the D(x) damping
function are a ) 10, b1 ) 1, b2 ) 15, and n ) 6. Parameter
values (except those specifying the initial wave packet and
the Gaussian potential) were determined through experimen-
tation, the goal being to obtain reproducible and accurate
values for the scattering wave function at relatively late times
(t e 1400) within a Viewing window (see below).

Figure 1 shows the real part of the (damped) initial
Gaussian wave packet (marked with an arrow directed toward
the barrier) and the imaginary part of the total potential
energy. The initial wave packet energy is E ) V0/4. The
pure imaginary absorbing potential is evident from the deep
wells near all four edges of the computational grid. For
viewing purposes, upper and lower cutoff values were applied
to both the wave packet and the potential energy. In order
to provide more resolution in the following figures, the results
(wave function and quantum momentum) were plotted in a
viewing window which is smaller than the computational
grid. The size of this window will be evident from the range
of the axes in the figures.

Figure 1. The real part of the (damped) initial Gaussian wave
packet (marked with an arrow directed toward the barrier) and
the imaginary part of the total potential energy. The initial wave
packet energy is E ) V0/4. The total potential includes both
the Gaussian barrier (damped along the y-coordinate) and
the absorbing potential, which is evident near the edges of
the computational grid. For viewing purposes, the negative
imaginary absorbing potential has been cut off at the lower
limit -1.5i. (The scaled Gaussian potential is plotted, Vsc(z)
) (25/V0)VD(z)).
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3. Computational Aspects

Three explicit time-integration algorithms were utilized for
propagating the wave packet in the complex space. The first
of these, the forward Euler method (first-order accuracy in
∆t, the time step), is given by43

ψ(z, t+∆t))ψ(z, t)-∆t · (i ⁄ p)Ĥψ(z, t) (9)

where Ĥ is the Hamilton operator. For this algorithm, the
absorbing potential in eq (8) was used to deal with reflection
from the edges of the grid. The second propagation algorithm,
the leapfrog method (second-order accuracy), is given by43

ψ(z, t+∆t))ψ(z, t-∆t)- 2∆t · (i ⁄ p)Ĥψ(z, t) (10)

For this algorithm, the damping potential D(x)D(y) was
applied to the current wave function after every M ) 20
time steps. Finally, a version of the Verlet method44 (fourth-
order accuracy) for wave function propagation was used. This
algorithm is given by

ψ(z, t+∆t)) 2ψ(z, t)-ψ(z, t-∆t)- (∆t ⁄ p)2Ĥ(Ĥψ(z, t))
(11)

For this case, in common with the leapfrog method, the
damping potential was applied to the current wave function
every M ) 20 time steps.

For some of the computations described later, the leapfrog
method was used, with the time step in the range ∆t )
0.5-1. Other calculations were run using the Euler method,
with a smaller time step in the range ∆t ) 0.1-0.5.
Calculations were also run using the Verlet method, with a
time step in the range ∆t ) 1-3. Within the viewing window
mentioned earlier, results obtained using these three algo-
rithms agreed very well with each other.

In order to operate with the Hamiltonian on the wave
function, we need to evaluate ∂2ψ(z)/∂z2. Assuming analy-
ticity of the wave function on the computational grid, this
was done by taking the derivative with respect to x: ∂2ψ(z)/
∂x2. The quantity ∂2ψ(z)/∂z2 can also be obtained by taking
the y derivative: -∂2ψ(z)/∂y2. As a result, it can be verified
numerically that Laplace’s equation39 is satisfied: ∂2ψ(z)/
∂x2 + ∂2ψ(z)/∂y2 ) 0.

In order to compute the quantum momentum from the
wave function according to eq 1, we need to evaluate ∂ψ(z)/
∂z. Again assuming analyticity, this was done by taking the
derivative with respect to x: ∂ψ(z)/∂x. The same result for
∂ψ(z)/∂z can also be obtained by taking the y derivative:
-i∂ψ(z)/∂y. As a result, it can be verified numerically that
the Cauchy-Riemann equation39 is satisfied: ∂ψ(z)/∂x )
-i∂ψ(z)/∂y.

4. Wave Packet Evolution

The time dependence of the wave packet was studied by
plotting real(ψ(z,t)) within the viewing window. For six time
steps, Figure 2 shows surface plots of this function along
with mesh plots of imag(V(z)) (see eq 8). In common with
maps showing the quantum momentum (section 5), the initial
wave packet energy is E ) V0/4. Note that the viewing angle
is slightly different for each part of this figure.

Part (a) shows the initial wave packet, labeled with an
arrow heading toward the barrier. The component of the wave
packet at negative values of y at later times makes the
dominant contribution to the transmitted wave packet.
However, the component of the wave packet at positive
values of y makes an important contribution to oscillatory
structure in the reflected wave packet. In part (b), for t )
300, the leading edge of the wave packet encounters the
barrier potential below the real axis. In part (c), for t ) 500,
the leading edge of the packet has penetrated the barrier
region for y < 0.1. Note that the de Broglie wavelength for
the transmitted packet on the left side of the figure is much
smaller than for the reflected packet on the opposite side of
the figure. Starting with part (d), for t ) 700, and continuing
with part (e), for t ) 1000, additional amplitude penetrates
to the product side of the barrier. In parts (e) and (f), the
latter for t ) 1200, the component of the wave packet above
the real axis undergoes reflection from the barrier. It will
be seen in the next section that undulations created aboVe
the real axis are deflected toward the region below the real
axis, and as they cross this axis an observer positioned there
would record ripples in the density. In the following section,
these features will be linked to the time development of the
quantum momentum function.

4. Quantum Momentum Maps

The time dependence of the quantum momentum field, p(z,t),
can be studied by superimposing vector maps of the QMF
on contour plots of the amplitude of the wave function. (If
ψ(x,y,t) ) R(x,y,t) exp(iφ(x,y,t)), where R and φ are real-
valued, then the amplitude is |ψ(z,t)| ) R(z,t).) It was decided
not to display flux maps (even though they were computed),
where jb ) FVb, because very large values for the flux away
from the real axis obscured the more interesting (and much
smaller) values near this axis. For the same six time steps
used in Figure 2, Figure 3 shows the momentum field
superimposed upon contour maps of log 10|ψ|. (In order not
to lose detail near the real axis, scaled momentum Vectors
were plotted: if the magnitude of the momentum vector was
greater than 1.5 times the average momentum for vectors
within the viewing window, then the length of the momentum
vector was reset to 1.5 times the average value).

The initial momentum distribution and amplitude are
shown in part (a). These momentum vectors swirl coun-
terclockwise around the point zpp ) (6,0.493) (which lies
just above the top edge of the figure). This pinch point20

is the saddle point for the initial density in the complex
plane and occurs at the distance ypp ) k0/(2�) above the
center of the initial wave packet on the real axis. In
addition, the length of the momentum vectors increases
with the radial distance from this point. In part (b), for t
) 300, the leading edge of the wave packet encounters
the lower part of the barrier potential near y ) -0.3.
Momentum vectors in this region (and in the entire leading
edge of the wave packet) are directed upward. In contrast,
momentum vectors on the trailing edge of the wave packet
are directed down toward negative values of y. An
interesting feature shown by the amplitude contours is the
tilt of the vertical axis, with the result that amplitude below
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the real axis encounters the barrier region before the upper
component. In part (c), for t ) 500, the leading edge of
the packet for y < 0.1 has penetrated the lower part of
the barrier region. In addition, the first of a series of ripples
or undulations is developing near y ) 0.35 and x ) 8.2
on the reflected side of the barrier. These ripples form
(for 400 < t < 700) when amplitude that is thrust upward
between x ) 8 and x ) 9 interferes with amplitude moving
forward for y > 0.3. Starting with part (d), for t ) 700,
several ripples are noted above the real axis between y )
0.1 and y ) 0.3. As seen in parts (e) and (f), for t ) 1000
and t ) 1200, respectively, these ripples (featuring five
local maxima) gradually move down toward negative va-
lues of y, and the momentum vectors deflect (see the
discussion below) around quasi-nodes in the amplitude.

When these ripples pass near the real axis, five relatively
large oscillations are observed in the density along this
axis. However, an observer confined to this axis would
not sense the Vertical component of the flow around the
local minima as they form and decay. An additional feature
shown in parts (e) and (f) is the ‘fracture’ of the wave
packet near the barrier region. Although the momentum
vectors for the transmitted packet have large components
parallel to the real axis, those on the reflected side of the
barrier form a much more complex pattern characterized
by alternating regions with the flow directed either up or
down in the y direction.

A blowup of the central portion of Figure 3(e), shown in
Figure 4(a), displays counterclockwise circulation of the
momentum vectors around four local maxima in the ampli-

Figure 2. Time dependence of the real part of the scattering wave function. The initial wave packet energy is E ) V0/4. In each
figure, a mesh plot of the imaginary part of the scaled complex Gaussian potential is also shown (see the caption to Figure 1).
For these viewing angles, the initial wave packet moves from right to left, and the transmitted region is on the left-side of the
figure.
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tude. The momentum vectors have very small magnitudes
near the local maxima, which are transient stagnation points.
As time proceeds, these maxima gradually move toward the
lower left of the figure, i.e., toward smaller values of x and
negative values of y. On the real axis, local peaks in the
amplitude for the reflected wave packet are approximately
equally spaced and occur near the positions x ) 6.6, 7.1,
7.65, and 8.2. At each of these positions, the momentum
vectors have large components toward the left, in accord with
the wave packet undergoing reflection from the barrier.

It is shown elsewhere21 that the QMF near a stagnation
point (zs) may be approximately written p(z,t) ) p′(zs,t)(z-zs),
where the spatial derivative is p′(z,t) ) ∂p(z,t)/∂z. If a test
particle of mass m is launched from the position z0, then it
will follow the trajectory z(t) ) zs + [z0 - zs] exp[(p′(zs,t)/
m)t]. It is useful to express p′(z,t) in terms of real and
imaginary parts: p′ ) R + i�. For the case where R ) 0 and
� > 0, the particle will trace out a counterclockwise orbit in

the complex plane. This is the situation pertaining to the
momentum field shown in Figure 4(a). Other categories of
orbits (for various values of R and �) near a stagnation point
have been described.21

Between the four local maxima in Figure 4(a) are three
quasi-nodes (the approximately circular yellow regions). In
two or more real coordinates, quantum momentum vectors
form approximately circular paths around nodes in the wave
function. The circulation integral around these closed paths
is quantized in integer multiples of 2πp. Bearing this in mind,
it may be surprising that the momentum vectors in Figure
4(a) do not show circular flow around these local minima.
Rather, the flow follows four hyperbolic paths: directed up
on the left-side, down on the right-side, horizontal toward
the left above the minimum, and horizontal toward the right
below the minimum. In the following section, this flow will
be analyzed in terms of another vector field.

Figure 3. Time dependence of the quantum momentum (arrows) superimposed upon contour maps of log 10|ψ|. The initial
wave packet energy is E ) V0/4. The lower component of the initial wave packet in (a) moves toward the right. The real axis is
shown by the horizontal red line. Contours of the complex Gaussian potential energy are shown by the black contours. The 11
contour values for log 10|ψ| are given by the following: -2, -1.3, -0.8, -0.4, -0.25, -0.1, 0.05, 0.25, 0.45, 0.7, 0.9.
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6. The Pólya Vector Field and Vorticity

In order to analyze hyperbolic flow, the QMF for a model
wave function will be plotted. For the function φ(z) )
(z - z0) exp(-�(z - z0)2), which has a node at z0, the QMF
is given by

p(z)) p
i [ 1

z- z0
- 2�(z- z0)] (12)

This function has a first order pole at z0. The vector map for
p(z) is shown in Figure 5(a). (Similar plots appear in Visual
Complex Analysis:39 see Figures 1 and 5 in Chapter 10.) Near
the node, two diagonal separatrices confine the flow within
four quadrants. Because of this confinement, momentum
vectors cannot circulate completely around the node. Within
each quadrant, the flow is directed inward near one separatrix
and outward along the other. Quantum trajectories (which
are tangent to the streamlines) are forced away from the nodal
point by the quantum force, the gradient of the quantum
potential. Using the first term in eq 12, the quantum force
near the node is given by40

Fq(z))- p
2mi

∂
2p

∂z2
) p

2

m
1

(z- z0)
3
) p

2

m
1

r3
e-3iθ (13)

where z ) z0 + r exp(iθ) was used in the last step. The
vector map of this function (not shown here) clearly shows
the r-3 repulsive character near the node (except along the
asymptote at θ ) π/4.)

An alternative way of describing and visualizing flow in
the complex plane will now be introduced. This function
was utilized previously40 in an analysis of quantum vorticity
in the complex plane. We begin by considering the circula-
tion integral: the line integral of the QMF around a simple
closed curve in the complex plane. According to the Cauchy
integral theorem,38 this integral vanishes if p(z) is analytic
on and within the bounding contour. If both the line element
and the QMF in the circulation integral are decomposed into
real and imaginary parts, we obtain38,39 (the momentum
vector has the components pb(z) ) [pr,pi])

Ip(z)dz)I(pr + ipi)(dx+ idy)

) I(prdx-pidy)+ iI(prdy+pidx)

) IPb · d tb+ iIPb · dnb (14)

In the last step, the Pólya vector field has been introduced;38,39

this vector is defined by pb ) [pr,-pi] or as a complex
function, P(z,t) ) p*(z,t). In addition, the tangent along the
integration contour and the outward normal vector along the

Figure 4. (a) Quantum momentum field (arrows) superim-
posed upon a contour map of log 10|ψ| for t ) 1000. This
figure, which shows hyperbolic flow around three quasi-nodes,
is a blowup of the central region of Figure 3(e). The real axis
is shown by the red line. Several contours (in black) of the
complex Gaussian potential energy are shown on the right
side of the figure. (b) Pólya vector field associated with this
momentum field, showing counterclockwise circular flow
around the three quasi-nodes.

Figure 5. Quantum momentum field near a node in a model
wave function is shown in part (a). This wave function has a
node at the middle of the figure. In-flow and out-flow asymp-
totes (separatrices) are shown by the two (red) diagonal lines.
Two stagnation points (S) are shown on the left and right
edges of the figure. Part (b) shows the associated Pólya vector
field. This field shows counterclockwise circular flow around
the nodal point.
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integration contour are dtb ) [dx,dy] and dnb ) [dy,-dx],
respectively.

Although the Pólya field contains the same information
as the momentum field, this information is displayed differ-
ently. To continue with the example mentioned previously,
Figure 5(b) shows the Pólya field corresponding to the QMF
plotted in part (a) of this figure. The vectors plotted in this
figure clearly show counterclockwise circular flow around
the nodal point. In this case, if the integration contour
encloses the pole in p(z), the imaginary term in the last step
of eq 14 vanishes and the circulation integral is real-valued
(and takes the value 2πp, corresponding to a quantized vortex
in the ‘ground state’). Returning to the reflected wave packet
for the barrier scattering problem, Figure 4(b) shows the
Pólya field corresponding to the QMF in part (a). The Póla
field, as expected, shows counterclockwise circular flow
around each of the three quasi-nodes. There are two
additional features evident from this figure: (a) the Pólya
vectors are always tangent to contours of the wave function
amplitude (or the density); (b) the Pólya vectors display
hyperbolic flow around stagnation points, such as the local
maxima in the amplitude shown in this figure. The first
property is generally valid for any wave function.40 It has
also been shown that Pólya vectors are parallel to contours
of imag(S) and orthogonal to contours of real(S), where S(z,t)
is the complex action function.40 The complex action
function is considered further in the next section.

The local circulation of a vector field is frequently
measured by the vorticity, the curl of the field. Accordingly,
the vorticity of the Pólya field is given by

Ωf(z, t)) ∇b × Pb(z, t))
∂Pi

∂x
-

∂Pr

∂y
(15)

In regions where the field is analytic, the vorticity is zero,
so that the magnitude of the vorticity vector may be viewed
as a local measure of nonanalyticity. The vorticity is plotted
in Figure 6 for t ) 1000. The four sharp peaks for x < 8
form at the positions of the four quasi-nodes in the wave
function (and at the four peaks in imag(S(z,t)) shown in
Figure 7(a)). These peaks gradually move to the left toward
small values of x as the packet reflects from the barrier. There
are also two peaks close to the barrier maximum, at xb ) 9,
and these gradually decay as the wave packet bifurcates.

7. The Complex Action

The complex action function, S(z,t), not only determines the
wave function through the exponential ansatz, ψ(z,t) )
exp[iS(z,t)/p], but also displays interesting features that will
be illustrated in this section. If this function is decomposed
into real and imaginary parts, S ) Sr+iSi, the wave function
then becomes ψ(z,t) ) exp[-Si(z,t)/p] exp[iSr(z,t)/p]. From
this expression, it is evident that the imaginary part of the
action determines the amplitude of the wave function. Large
positive values of Si imply small values for the amplitude.
In addition, the real part of the action, the ‘pure phase’, also
has interesting properties, which will now be considered.

For the barrier scattering example, Figure 7(a) shows the
imaginary part of S(z,t), while part (b) shows the real part
of this function. In part (a), the four peaks in imag(S(z,t))
between x ) 6 and x ) 8 are associated with the four quasi-
nodes evident in Figures 3(e) and 4. Part (b) shows the
principal zone of the phase, with values in the range -π e
real(S(z,t)) e π. Starting near the position of each quasi-

node and progressing in the positive y direction are sharp
discontinuities of 2π in the phase. Discontinuities of this type
are expected near nodes or quasi-nodes. For example, the
model wave function φ(z) ) z exp(-�z2 - iKz) has a QMF
displaying hyperbolic flow near z ) 0 and a phase discon-
tinuity in real(S(z,t)) along the positive y direction. For φ(z),
the action function is given by S(z) ) -ip[ln (z) - �z2 -
iKz]. It is important to note that the complex function ln (z)

Figure 6. Vorticity field for time t ) 1000. The four peaks for
x < 8 form at the positions of the four peaks in imag(S(z,t))
shown in Figure 7(a).

Figure 7. The imaginary (a) and real (b) parts of the complex
quantum action function for the time t ) 1000. In part (b), the
principal value of the multivalued function is shown. These
figures should be compared with the amplitude and QMF
plotted in Figure 3(e) and the QMF and Pólya vector fields
plotted in Figure 4.
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is multivalued: ln(z) ) ln|z| + iArg(z) + 2mπi, where the
principal zone of the argument is π e Arg(z) e π, and m )
0, (1, (2,... As a result, the action function is also
multivalued. When the principal sheet, corresponding to m
) 0, and the sheets for m ) (1, (2,... are plotted, the
Riemann surface for this function is obtained.

8. Summary

The time-dependent scattering of a wave packet from a
Gaussian barrier was computationally investigated in the
complex plane. Time evolution of the wave packet was
followed by plotting the real part of the wave function and
the quantum momentum field. In the reflected packet, an
important role was played by ripples forming aboVe the real
axis. When these ripples pass near the real axis, ‘interference
fringes’ are observed in the density. However, an observer
confined to this axis would be ignorant of the significant
vertical component of the flow (along the imaginary axis)
near the local maxima and minima. In contrast, the compo-
nent of the packet below the real axis makes a significant
contribution to the transmitted packet. The quantum mo-
mentum vector maps show hyperbolic flow forming four
‘petals’ around transient quasi-nodes in the amplitude and
counterclockwise circular flow around stagnation points,
including local maxima in the amplitude. When the Pólya
vector field associated with this momentum field was plotted,
circular counterclockwise flow was obtained around the
quasi-nodes. The vorticity, the curl of the Pólya field, is used
to pinpoint regions of nonanalyticity in the QMF. These are
also the positions where peaks occur in the imaginary part
of the quantum action function.

Wave packet dynamics in the complex plane has been
studied through an alternate approach: numerical analytic
continuation from the wave function computed directly on
the real axis.45 Fortunately, within the viewing window,
ψ(z,t) turns out to be in excellent agreement with the results
described in the current study.
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Abstract: In two previous studies, the time-dependent scattering of a wave packet from a
Gaussian barrier was investigated computationally in the complex z-plane. One of these involved
the ‘direct’ propagation of the wave packet in the complex space, and the other used numerical
analytic continuation techniques to generate the dynamics in the complex plane from the wave
function computed on the real-axis. In the current study, the dynamics of exact quantum
trajectories are analyzed for the same barrier scattering problem. Thousands of quantum
trajectories were launched from positions near the center of the initial wave packet. These
trajectories were computed by integrating equations-of-motion involving the quantum momentum
function, which was obtained from the time-dependent wave function and its derivative. In order
to analyze the dynamics, many trajectories were plotted on space-time diagrams. Particular
emphasis was placed upon trajectories undergoing reflection in the barrier region. Some groups
of strongly correlated trajectories form long-lived highly organized patterns, including helical
wrappings around a series of stagnation filaments. These curves alternate with quasi-nodes
where the amplitude of the wave function reaches low values. In addition, other trajectories for
short times follow hyperbolic paths as they propagate near vorticity tubes surrounding these
quasi-nodes.

1. Introduction
The current study is an extension of our previous investiga-
tions on wave packet scattering from a barrier potential in
the complex plane.1,2 This ‘extended’ 2D scattering problem
was approached in two quite different ways: ‘direct’ propa-
gation of a wave packet in the 2D complex z-space1 and
numerical continuation into the complex plane of time-
dependent information computed on the real-axis.2 The rich
dynamics ensuing in the complex plane were analyzed by
plotting the amplitude of the wave function and several other
functions. In the introductory sections of these studies, we
reviewed the use of complex-valued classical trajectories,
analytical quantum trajectories computed for systems where
the wave function is known, and for synthetic approximate
quantum trajectories wherein information (namely, the
quantum action function) is computed along each trajectory
so that the wave function may be synthesized on-the-fly. Our

previous papers should be consulted for references to these
earlier studies.

The current study, dealing with ‘exact’ quantum trajec-
tories for a nonstationary scattering problem, complements
the detailed analysis of complex-valued quantum trajectories
for one-dimensional stationary state scattering problems (the
Eckart barrier, the soft potential step, and a downhill potential
with a barrier).3,4 The only previous studies of complex
quantum trajectories for nonstationary problems have dealt
with barrier-free systems for which the time-dependent wave
function is known (or can be found) analytically; these
include the free Gaussian wave packet3 and the frontal
collision of two Gaussian wave packets.5

In the current study, thousands of quantum trajectories
were evolved in the complex space for the barrier scattering
problem. In order to do this, the quantum momentum
function along each trajectory was computed from the time-
dependent wave function which was simultaneously com-
puted on a large computational grid. Time histories of the* Corresponding author e-mail: barowland@gmail.com.
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reflected trajectories were studied in detail, because many
of them have much more complicated features than the
transmitted trajectories. In addition, strong correlation be-
tween these trajectories leads to the formation of highly
organized patterns. In space-time diagrams for the reflected
wave packet, we will identify Vorticity tubes (to be defined
shortly). Groups of quantum trajectories coming from widely
separated initial locations end up wrapping around stagnation
curves which form in pairs adjacent to these tubes. Other
quantum trajectories experience ‘hyperbolic indentations’
when they pass near the vorticity tubes. The helical coils of
trajectories around the stagnation curves and the hyperbolic
flow near vorticity tubes exemplify the most complicated
types of trajectories that form during the reflection of the
wave packet.

In an analysis of quantum vorticies that form around nodes
in the complex plane for stationary states,6 vector maps of
the QMF were shown to exhibit hyperbolic flow close to
these nodes. However, when the Pólya vector field,7,8 defined
as the conjugate of the QMF (P(z) ) p*(z)), is plotted,
circular counterclockwise flow is obtained near the nodes.
The vorticity, the curl of the Pólya field, Ωb(z) ) ∇ b × Pb(z),
provides a quantitative measure of the circulation of this field.
For nonstationary states, as time proceeds, the nodes
generally translate along curves, and this leads to time-
dependence of the vorticity field. At a particular time, if a
closed curve encloses a nodal region such that the magnitude
of the vorticity is constant on this curve, then for later times
a vorticity tube is formed by the isosurface surrounding this
nodal curve. (As a historical note, Helmholtz introduced

vorticity tubes9 into hydrodynamics in 1858). For purposes
of the current study, the vorticity tube will be defined as an

Table 1. Categories of Quantum Trajectories

type description

transmitted transmit beyond barrier
maximum (x>xb)

reflected trajectories:
upper propagate toward upper

part of barrier region
down-up move down initially and

deflect toward larger value
s of y without loops or
spirals

loop-simple move in toward barrier
and deflect toward larger
values of y without spirals

loop-down move in toward barrier
and deflect toward smaller
values of y without spirals

loop-complex move upward as
propagation proceeds in
toward barrier and reflect
toward smaller values of y
with some undulations

twist move upward as
propagation proceeds in
toward barrier and then
reflect toward smaller
values of y with several
loops or spirals

spiral move upward as
propagation proceeds in
toward barrier and then
reflect toward smaller
values of y with complex
spiraling

Figure 1. Time-dependence for four groups of quantum
trajectories: (a) transmitted trajectories; (b) spiral trajectories;
(c) twist trajectories; and (d) loop-simple trajectories. Propaga-
tion time is plotted on the vertical axis above the complex
plane. In each part, the vertical slabs are isosurfaces of the
absolute value of the potential energy.
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isosurface corresponding to a constant (but small) value of
|ψ(z,t)| enclosing the path followed by a moving quasi-node.
Within these tubes, Ωb (z,t)| takes on large values, but the
vorticity vanishes outside of these tubes (because ψ(z,t) is
an analytic function in these regions).

The remainder of this study is organized as follows.
Computation of quantum trajectories is described in section
2, and eight types of reflected and transmitted trajectories
are described in section 3. A series of time slices showing
trajectory locations are presented in section 4, and vertical
tubes and two types of reflected trajectories are described in
more detail in section 5. Finally, a summary appears in
section 6.

2. Propagation of Quantum Trajectories

Before presenting the method used to propagate quantum
trajectories, the scattering problem will be briefly described.1,2

The initial wave packet in z-space is given by

ψ(z)) (2� ⁄ π)1⁄4e-�(z - z0)2
eik0(z-z0) (1)

where the translational energy is E ) p2k0
2/(2m). This function

is centered at the position z0 ) (x0,0) ) (6,0), the width
parameter is � ) 6, and the mass is m ) 2000 (all parameters
are given in atomic units). The complex-valued Gaussian
potential is given by

VG(z))V0e
-γ(z - zb)2

(2)

This barrier is centered at zb ) (xb,0) ) (9,0), the width
parameter is γ ) 4, and the barrier height on the real-axis is
V0 ) 0.035. The initial wave packet energy is E ) V0/4.

Quantum trajectories in the complex plane are obtained
by integrating the equation of motion

dz(t)
dt

) p(z, t)
m

(3)

where the quantum momentum function is obtained from
the wave function through the relation

p(z, t)) p
i

1
ψ(z, t)

∂ψ(z, t)
∂z

(4)

The real and imaginary components of the momentum vector,
pb(z,t) ) [pr(z,t),pi(z,t)], are responsible for ‘horizontal’ and
‘vertical’ components of motion in the complex plane. This
function possesses two special points of interest: poles occur
at nodes where ψ(z,t) ) 0, and p(z,t) becomes zero at
stagnation points where dψ(z,t)/dz ) 0 (and ψ(z,t) * 0). In
addition, as described in detail in our earlier studies, the
quantum momentum field exhibits hyperbolic flow around
quasi-nodes in the density (these are local minima where
the amplitude becomes small but does not reach zero). In
order to analyze this flow, the Pólya vector field was
introduced, and maps of this field show circular counter-
clockwise flow around quasi-nodes and hyperbolic flow
around stagnation points.

The following procedure was used to propagate trajectories
across the computational grid. At each time step, it is
necessary to find the indices of the corner grid points for
the cell in the computational grid in which the trajectory is
located. These indices for the four grid points at the corners
of this cell are denoted (j0,k0), (j0+1,k0), (j0,k0+1), and
(j0+1,k0+1). Since the wave function is known at each of
these points, dψ/dz may be computed at each corner point
using wave function values known at neighboring grid points.
Equation 4 was then used to compute the quantum momen-
tum function at each corner grid point. Finally, linear
interpolation was used to find the quantum momentum at
the position of the trajectory within this cell. This procedure
was then repeated for each trajectory at each time step.

3. Types of Quantum Trajectories

Starting from a Cartesian grid near the center of the initial
wave packet, hundreds of quantum trajectories were launched
toward the barrier region. Although it is trivial to categorize
these trajectories as either ‘transmitted’ or ‘reflected’, it is
more subjective to group the reflected trajectories into the
seven categories listed in Table 1. It is useful to note that
some of the reflected trajectories display simple behavior,
while others display very complicated motions. Some
propagate directly toward the barrier region, while others
tend to move either up or down relative to the vertical
(imaginary) axis. The complicated reflected trajectories arise
because of quantum vortices that develop above the real-
axis. Some of the quantum trajectories become trapped near
transient stagnation points located between the vortices, while
others execute complex loops or spirals as they escape from
or avoid these regions.

Figure 1 shows plots for four of the eight trajectory
categories listed in Table 1. The vertical coordinate is the
propagation time, and these trajectories were propagated for
1000 atomic time units. In each figure, isosurfaces having
constant values of the potential energy are shown. Of course,
the potential is independent of time, so that each isosurface
appears as a curved vertical slab. The real-axis, when
displaced vertically in time, is outlined by the red box. Part
(a) of this figure shows six transmitted trajectories, of which
two barely make it to the transmitted side of the barrier. In
part (b), seven spiral trajectories are shown. These trajec-
tories initially move to larger values of y, but after about t
) 600, they spiral back toward the real axis. In part (c), 22

Figure 2. Contours (color) of log 10|ψ| for the initial wave
packet in the complex plane. Contours (black) of the magni-
tude of the potential, |V(z)|, are shown on the right side of
the figure. In addition, a 45 × 43 grid of quantum trajectories
at their initial locations are shown (colored dots).
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twist trajectories are plotted. After reflection from the barrier,
these trajectories execute at least one twist as they move
toward smaller values of y. Finally, in part (d), 5 loop-simple
trajectories are shown. As these trajectories approach the
barrier region, they move upward toward more positive
values of y, and then reflect down toward smaller y values,
without looping or spiraling. In the next section, we will
observe that twist and spiral trajectories acquire their
complicated motions by passing close to quasi-nodes, where
they are strongly influenced by the repulsive quantum
potential. Of the seven types of reflected trajectory listed in
Table 1, only the loop-simple and upper trajectories are not
strongly influenced by the quasi-nodes that form on the

reflected side of the barrier. Trajectory dynamics near the
vortical regions are described in more detail in section 5.

4. Quantum Trajectory Dynamics

Quantum trajectory evolution was studied by launching a
set of trajectories from a rectangular grid located near the
starting position of the initial wave packet. In Figure 2, the
colored dots show the initial positions of 1935 trajectories
superimposed upon a color-fill contour map of the amplitude
of the initial wave function. Note that the amplitude has
significantly higher values below the real-axis. The trajec-
tories were propagated for the time t ) 1000, and during
this interval some trajectories transmitted to the right side

Figure 3. Contours (color) of log 10|ψ| showing propagation of the wave packet in the complex plane. Contours (black) of the
magnitude of the potential, |V(z)|, are shown on the right side of the figure. In addition, locations the quantum trajectories are
shown (colored dots).
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of the barrier, but most moved back to the left during the
formation of the reflected wave packet.

Snapshots of the quantum trajectories and the amplitude
of the wave function are shown at five time steps in Figure
3. Each trajectory always carries the same color, so it is
possible to follow some of the trajectories as they interact
with the potential. In part (a), the trajectory grid undergoes
a shearing deformation when trajectories on the front edge
of the wave packet are thrust upward with high speeds, while
those on the upper left move down toward the real-axis with
low speeds. In part (b), trajectories on the upper right are
starting to form clusters when the wave packet begins to
reflect from the upper part of the barrier potential. In part
(c), a series of five quasi-nodes is forming above the real-
axis from about x ) 6.5 to x ) 8.5. Some of the quantum
trajectories are clustering near stagnation points located to
the lower-right or upper-left of each quasi-node. Also, a few
trajectories have crossed over to the transmitted side of the
barrier. In parts (d) and (e), these quasi-nodes move further
toward the lower-left of the figure as the reflected wave
packet recedes from the barrier region. Some of the quasi-
nodes in part (e) are moving across the real-axis, where an
observer would detect ‘interference oscillations’ in the
amplitude and density.

We will see in section 5 that trajectories trapped near
stagnation points (which themselves are time-dependent)
move away from the barrier region in correlated groups. In
addition, trajectories become ‘indented’ when they tempo-
rarily follow hyperbolic paths near quasi-nodes. The quasi-
nodes modify the local trajectory dynamics through the
intense quantum potential and the resulting strong quantum
forces in there regions. The absolute value of the quantum
potential at time t ) 1000 is shown in Figure 4. The pink
regions of high quantum potential between x ) 4 and x ) 8
locate eight quasi-nodes that continue to move toward the
lower left. The quantum trajectories (colored dots) are
repelled from regions of high quantum potential. Clusters

of trajectories are noted around pairs of transient stagnation
points which form close to each quasi-node (especially near
x ) 8).

5. Trajectory Dynamics near Vorticity Tubes

Trajectory dynamics within the reflected wave packet is
strongly influenced by multiple quasi-nodes that form above
the real-axis and which subsequently move toward the region
below this axis as the reflected packet recedes from the
barrier region. In order to explore features of quantum
trajectories near these quasi-nodes, the trajectories will be
plotted on the type of three-dimensional diagram shown in
Figure 5, where propagation time appears on the vertical axis
above the complex plane. (In Figures 5-8, note that the
positive y-axis is pointing toward the viewer.) In this figure,
isosurfaces have been plotted for two constant values of the
wave function amplitude. As the initial wave packet scatters

Figure 4. Absolute value of the quantum potential at time t
) 1000. The pink regions between x ) 4 and x ) 8 locate
eight quasi-nodes that gradually move toward the lower left.
The quantum trajectories (colored dots) are repelled from
regions of high quantum potential. Clusters of trajectories are
noted around transient stagnation points near the quasi-
nodes.

Figure 5. Two isosurfaces of log 10|ψ(z,t)| are drawn for the
values °0.6 (inner pink surface) and °0.9 (outer cyan surface).
The initial wave packet is centered near z0 ) (6,0), and the
barrier is centered near zb ) (9,0). Starting around t ) 350,
several vorticity tubes develop in the region above the real-
axis. As time proceeds, these tubes bend back toward the
real axis.

Figure 6. Quantum trajectories (colored lines) wrapping
around the stagnation curve between vorticity tubes 1 and 2.
One isosurface of log 10|ψ(z,t)| is drawn for the value °0.7.
Trajectories launched from positions relatively far from the
real-axis form the tight inner core of the bundle, while
trajectories launched closer to the real-axis form the loosely
bound outer sheath.
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from the barrier region on the left side of the figure, a
vorticity tube surrounds each of the quasi-nodes that forms
above the real-axis. Each tube encloses a region of low
amplitude, one of the quasi-nodes. As time proceeds, the
reflected wave packet moves away from the barrier region,
which causes these tubes to bend toward (and extend below)
the real-axis.

In order to elucidate the dynamics, a large number of
quantum trajectories (1521) were launched from a 39 × 39
grid located near the center of the initial wave packet. This
grid covered the range [0.4,-0.55] along the y-axis and
[6,6.95] along the x-axis. (This grid is slightly different from
the one shown earlier in Figure 5.) All of these trajectories
were plotted, but only those that eventually propagated near
the vorticity tubes will be described in this section. In Figures
5- 8, sets of quantum trajectories are plotted, along with
one or more isosurfaces of the wave function amplitude.

In Figure 6, 57 quantum trajectories (colored lines) are
shown wrapping counterclockwise (when viewed from the

-y direction) around the stagnation curve that forms between
vortical tubes 1 and 2. (These tubes are numbered consecu-
tively from the barrier region out toward the location of the
initial wave packet.) There are three types of trajectories that
eventually wrap around this stagnation curve. Trajectories
launched from positions relatively far from the real-axis
(between y ) -0.45 and -0.55) gather in the time interval
t ) 300-350 to form the tight inner core of the bundle. After
that, trajectories launched slightly closer to the real axis
(between y ) -0.40 and 0.48) gather in the time interval t
) 450-750 to form the middle segment of the bundle.
Finally, trajectories launched closer to the real-axis (between
y ) 0.05 and 0.35) gather in the time interval t ) 550-750
to form the more loosely bound outer sheath. Even though
trajectories from these three sets travel different distances
with different velocities, they eventually become correlated
and twist in unison around the stagnation curve.

In Figure 7, 487 quantum trajectories are shown wrapping
counterclockwise abound six stagnation curves which form
near vorticity tubes 1-7. As we progress from right to left,
the trajectories become more tightly wrapped around the
stagnation curves. The trajectories that wrap around a
particular stagnation curve are launched from a specific curve
in the x-y plane. Finally, in Figure 8, 22 trajectories are
shown deflecting around vorticity tubes 1 and 2. When each
trajectory passes near one of these tubes, it is first drawn in
toward the tube before repelling away (along a hyperbolic
path). The red arrows show indentations in five trajectories
as they pass near these tubes.

6. Summary

In this study, exact quantum trajectories were analyzed for
the barrier scattering problem that was computationally
investigated in our previous papers.1,2 These exact quantum
trajectories were computed by integrating equations-of-
motion involving p(z,t), the quantum momentum function,
which in turn was obtained from the time-dependent wave
function. Thousands of quantum trajectories were launched
from positions near the center of the initial wave packet,
and trajectory evolution was illustrated in space-time dia-
grams. These trajectories were divided into several categories,
depending upon whether they were transmitted or reflected
during the scattering process and upon the complexity of
the dynamics in the reflected region. Special emphasis was
placed upon selected sets of reflected trajectories. Among
the most interesting are those that follow counterclockwise
helical paths as they wind, like cooked spaghetti, around
stagnation curves that form adjacent to quasi-nodes (where
the amplitude reaches a local minimum) in the reflected wave
packet. The trajectories that wrap around the stagnation
curves originate from different regions near the center of
the initial wave packet. In addition, other reflected trajectories
follow hyperbolic paths when propagating near vorticity
tubes which surround these quasi-nodes. As the reflected
wave packet recedes from the barrier region, these tubes
move away from the barrier region and eventually cross the
real-axis, where an observer would detect ‘interference
oscillations’ in the density. However, this observer would

Figure 7. Quantum trajectories wrapping counterclockwise
abound six stagnation curves which form near the vorticity
tubes (487 trajectories are plotted). As we progress from
stagnation curve 1 on the right to curve 6 on the left, the
trajectories become more tightly wrapped. One isosurface of
log 10|ψ(z,t)| is drawn for the value °0.7.

Figure 8. Trajectories deflecting around two vorticity tubes
(22 trajectories were plotted). When each trajectory passes
close to a tube number 1 or number 2, it follows a hyperbolic
path. The five red arrows show hyperbolic indentations as the
trajectory passes near a tube.
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be clueless regarding the rich dynamics ensuing in the
complex space that preceded these observations.
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Abstract: A recently proposed electronic structure-based force field called the explicit polarization
(X-Pol) potential is used to study many-body electronic polarization effects in a protein, in particular
by carrying out a molecular dynamics (MD) simulation of bovine pancreatic trypsin inhibitor (BPTI)
in water with periodic boundary conditions. The primary unit cell is cubic with dimensions ∼54 × 54
× 54 Å3, and the total number of atoms in this cell is 14281. An approximate electronic wave function,
consisting of 29026 basis functions for the entire system, is variationally optimized to give the minimum
Born-Oppenheimer energy at every MD step; this allows the efficient evaluation of the required
analytic forces for the dynamics. Intramolecular and intermolecular polarization and intramolecular
charge transfer effects are examined and are found to be significant; for example, 17 out of 58
backbone carbonyls differ from neutrality on average by more than 0.1 electron, and the average
charge on the six alanines varies from -0.05 to +0.09. The instantaneous excess charges vary
even more widely; the backbone carbonyls have standard deviations in their fluctuating net charges
from 0.03 to 0.05, and more than half of the residues have excess charges whose standard deviation
exceeds 0.05. We conclude that the new-generation X-Pol force field permits the inclusion of time-
dependent quantum mechanical polarization and charge transfer effects in much larger systems
than was previously possible.

1. Introduction

Molecular dynamics simulation has become a powerful tool
for studying biochemical properties ranging from protein and
nucleic acid dynamics and structural prediction to chemical
reactions in enzymes.1 At the heart of these calculations is
the potential energy function that describes intermolecular
interactions in the system,2-8 and often it is the accuracy of
the potential energy surface (or its gradient field, called the
force filed) that determines the reliability of simulation
results. Because of the size of condensed-phase systems and
the complexity of biomacromolecules, one typically uses

molecular mechanics force fields, in which the potential
energy surface for a macromolecular system is approximated
by analytical functions describing bond stretches, bond angle
bends, torsions, and nonbonded van der Waals and Coulomb
interactions.2,3 The computational efficiency of analytic
molecular mechanics force fields allows molecular dynamics
simulations of biopolymer systems to be carried out with
the extensive sampling required for rare event simulation,
and classical simulations may be extended for long time
scales and to large molecular systems. There is therefore
considerable effort being expended to improve the physical
representation and accuracy of such force fields, with special
emphasis on including polarization effects to better represent
electrostatic forces.3,4

The development of molecular mechanics dates back to
early studies of steric effects of organic compounds,5-7 and
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the basis of the current generation of force fields for
biomolecular systems was established in the 1960s.2,8 The
first molecular dynamics simulation of a protein was reported
in 1977 by McCammon, Gelin, and Karplus;9 it lasted 8.8
ps for a small protein, in particular, bovine pancreatic trypsin
inhibitor (BPTI) in the gas phase. The authors noted two
limitations in that study. The first “is the approximate nature
of the potential energy function,” which was essentially of
the same type as we are using today, and the second “is the
neglect of solvent”. Although a relatively short simulation
was performed on a dry protein, the 1977 article9 is one of
the classic studies in our field because of its vision that paved
the way for molecular simulation and modeling as we know
it today. Of course, solvation effects are now recognized as
an unavoidable essential element in dynamics simulations
because they play an inescapeable role in biomolecular
function, and tremendous progress has been made in the
accuracy of conventional force fields for modeling biopoly-
mers.3,10-15 Yet, it is sobering to notice that the physical
representation and functional forms used in molecular
mechanics have hardly changed.

Despite the success of molecular mechanics in biomac-
romolecular modeling, there are also shortcomings, such as
inapplicability to chemical reactions and lack of polarization.
Recognition of the latter has motivated many efforts3,4,16-33

to parametrize nonadditive polarization effects in the force
fields. An alternative is to make a fundamental paradigm
change in the functional form of the force fields and the
representation of biomolecular systems,31-33 moving beyond
the present classical development. With this motivation, we
have introduced an explicit polarization (X-Pol) model based
on quantum mechanics as a framework for a next-generation
force field.34-36 In what follows, we report a molecular
dynamics simulation of a fully solvated BPTI protein that,
although short, employs an explicit quantal force field. This
force field is currently represented by an available semiem-
pirical method, namely the AM1 approximate molecular
orbital theory. Nevertheless, the present study demonstrates
the feasibility of an entirely new concept in force field
development for large-scale simulation.

Polarization and charge transfer are intrinsic properties of
the electronic structure of a molecular system, resulting in
polar bonds, nonunit charge on functional groups, and electric
response of electron density to an external field. Although
molecular polarization is a well-defined property, its incor-
poration into an MM force field is not unique.3,4,16-30

Consequently, numerous models have been proposed for the
classical treatment of polarization effects, and their validity
is a subject of ongoing validation. In the X-Pol potential,31-36

the internal energy terms and electrostatic potentials used in
the force field are described explicitly by a quantum chemical
wave function. Since molecular polarization and charge
transfer are represented naturally by electronic structure
theory, no polarization terms need to be added, and hence
there is no ambiguity in the choice of functional form for
polarization terms or in the selection of internal degrees of
freedom to define these terms. Furthermore, such a method
can be used to model chemical reactions.

In the X-Pol potential, a molecular system is partitioned
into fragments, such as an individual solvent molecule or a
peptide unit or a group of such entities. The electronic
interaction within each fragment is treated using electronic
structure theory, while the interfragment electrostatic interac-
tions are treated31,34-36 using a quantal analog of the
combined quantum mechanical and molecular mechanical
(QM/MM) approach (hence these interaction terms are
sometimes called electrostatic QM/MM terms). Because the
wave function of the entire system (which is assumed to be
a Hartree product of antisymmetrized fragment wave func-
tions) is variationally optimized,35 we can take advantage
of analytic gradient theory37 to develop efficient methods
for evaluating the contributions of internal energies and
electrostatic interactions to forces.35 Exchange repulsion and
dispersion-like attraction between fragments are added by
pairwise additive functions.

The X-Pol potential has been tested and applied to the
simulation of liquid water32 and liquid hydrogen fluoride,33

and it has been recently extended to treat fragments that are
covalently bonded to one another.34-36 Here we employ
analytic gradients to carry out the dynamical simulation of
a small protein, in particular BPTI, in a water box with a
size of about 54 × 54 × 54 Å3; the water box contains 4461
water molecules and one copy of the protein. We will analyze
the polarization of the charge distribution of the protein and
its significance for the description of protein-solvent
interactions. The stability of MD simulations using the X-Pol
potential for macromolecular simulations in water will also
be demonstrated. The calculations presented here are de-
signed to set the stage for systematically parametrizing the
X-Pol potential to achieve the goal of chemical accuracy in
such simulations.

In Section 2 we briefly review the theory of the X-Pol
potential, and section 3 gives computational details. Sections
4-6 present results, timings, discussion, and comments on
future prospects.

2. Theoretical Background

The design of the X-Pol potential has been described in a
series of publications,31-36 and here we only present the
necessary background for the simulation of a solvated
protein. We adopt the peptide unit convention as defined by
IUPAC,38 although we note that the residue convention is
typically used in other force fields.3,10-14 As endorsed in
the IUPAC rules,38 we will refer to a peptide unit by its
residue name. Figure 1 shows the division of a peptide chain

Figure 1. Definition of peptide units and the division of a
protein into fragments at the CR boundary atom. Two quantum
mechanical fragments are highlighted in green and red,
respectively, corresponding to residues I - 1 and I.
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into peptide units at a CR carbon; each peptide unit is defined
as a quantum mechanical (QM) fragment in the present
calculation, and the CR atom is called a boundary atom. Only
the valence electrons of the boundary atom are treated
explicitly, so the effective nuclear charge is four and the
associated number of electrons is also four. Both the nuclear
charge and electrons are divided equally into the two
neighboring fragments. The boundary atom has four hybrid
bonding orbitals,34,39 such that each fragment has two of
them as active orbitals and the other two as auxiliary orbitals.
This partition of a polypeptide results in two “pseudo atoms”,
which have identical coordinates, and each of which is half
of a boundary CR atom.34-36

The wave function of the entire system is written as a
Hartree product of Slater determinant wave functions of
individual fragments.31,34,35 In the X-Pol potential, the
internal energies of the fragments are treated with electronic
structure theory, and the interactions between fragments are
described by a combined quantum mechanical and molecular
mechanical (QM/MM40-42) approach. No bond stretching,
bending, or torsion terms appear because such interactions
are represented by quantum mechanics, and no harmonic
assumptions or analytic anharmonicity terms appear. It should
be emphasized that at the top of the hierarchy of approxima-
tions in the X-Pol model, there is no restriction on the level
of molecular orbital theory or density functional theory used
to represent each individual fragment. In principle, it is
possible to use a high-level quantum model to treat the region
of interest and to use a lower level of theory to represent
the rest of the system. In the present version of the method,
the electronic structure calculations are carried out by
valence-only semiempirical molecular orbital theory with the
neglect of diatomic differential overlap (NDDO43). Thus the
electronic wave function includes only valence electrons, and
core electrons are combined with nuclei and treated as frozen
atomic cores.

The total energy of the system includes the electronic
energies of the fragments (each including half of the
electronic Coulombic interactions and half of the core
interactions to avoid double counting) plus an empirical van
der Waals term. Thus,

Etot )Eelec +EVdw (1)

where the van der Waals energy term is required because
the electronic structure calculation omits electron correlation
and exchange repulsion between electrons in different
fragments. The van der Waals term is a sum32,35 of Lennard-
Jones potentials, including both repulsion due to exchange
and dispersion-like attraction due to medium-range correla-
tion energy. Note that Lennard-Jones interactions are omitted
for atom pairs within the same fragment and for those
separated by less than 3 bonds (i.e., 1-2 and 1-3 van der
Waals interactions are excluded) as in most of the conven-
tional force fields. In the current study, the atomic Lennard-
Jones parameters are taken directly from the CHARMM11

protein force field without modification, and pair parameters
are obtained by the usual combining rules. Furthermore the
NDDO parameters for nonboundary atoms are taken from
Austin Model 1 (AM144) without modification. The semiem-

pirical parameters for the carbon boundary atom are the same
as in AM1 except that the values of Uss and Upp are scaled
by 0.99 as in previous studies.34,36

In calculating Eelec, the electric potential due to fragments
sharing a boundary atom with the QM fragment under current
consideration is calculated by explicit Coulomb integrals;36

the electric potential from non-neighboring fragments are
approximated by one-electron integrals with partial atomic
charges. In the present calculations these charges are obtained
by the Mulliken approximation45 applied to wave functions
of each of the other fragments.

The total electronic energy of the system is determined
by a double self-consistent-field (DSCF) procedure.32,34-36

Starting with an initial guess of the one-electron density
matrix for each fragment, one cycles over all fragments in
the system and performs electronic structure calculations for
each fragment (peptide unit or water molecule) in the
presence of Mulliken charges of the other fragments until
the change in total electronic energy or density matrix
satisfies a predefined tolerance.32,34,36 To facilitate the DSCF
convergence, we introduce a quantum mechanical buffer zone
for the peptide unit (m) currently being treated quantum
mechanically in the inner SCF iteration.35,36 Thus, in addition
to this fragment m, we also include the peptide units prior
to and after fragment m in each explicit QM treatment. In
turn, fragment m becomes a buffer fragment for peptide units
m - 1 and m + 1, respectively. Note that during the SCF
optimization of the wave function for fragment m, the
electron densities of the buffer peptide units are kept frozen36

at values derived from a previous outer SCF iteration.
Although it increases the number of two-electron integrals,
the use of a buffer zone36 reduces the time spent on matrix
transformations (as compared to the earlier formulations)
because no atom needs special treatment to avoid double
counting or unphysical interactions with virtual orbitals. Once
the wave function is converged, the forces are calculated
analytically.35 When the DSCF process has converged, the
chemical potentials of all fragments will have been equalized.
This allows mutual polarization of all fragments subject to
the constraint that there is no charge transfer between
fragments.

A key methodological issue is that the Fock matrix is
expressed in a mixed basis consisting of atomic orbitals for
nonboundary atoms and hybrid orbitals34,39 for boundary
atoms. The present usage of hybrid orbitals is expected to
be more accurate than the original use39 because the charges
in the hybrid orbitals are all determined self-consistently
rather than determining some of them from MM parameters.

References 32 and 34-36 contain further details of the
method.

3. Computational Details

The initial structure of a BPTI protein molecule solvated in
a cubic box of water molecules is constructed using a
developmental version of CHARMM (version c34a1),46 in
which the present X-Pol potential has been implemented.
The non-hydrogen atomic coordinates are taken from the
structure 6PTI in the protein databank (PDB), and all
hydrogen atoms are built using the HBUILD function in
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CHARMM based on standard equilibrium geometrical pa-
rameters.11 There are two disulfide bonds in BPTI, which
are terminated by hydrogen atoms in the X-Pol treatment to
allow for convenient partition of the protein into peptide
units. We note that a simple extension of the procedure
already implemented into CHARMM can be made to handle
disulfide bond connecting two amino acids. For the present
study, our current treatment is sufficient. We have used a
neutral side chain for each histidine residue, while all other
titratable residues are assigned a protonation state cor-
responding to a pH of 7. The BPTI protein is then solvated
by a previously equilibrated water box of about 54 × 54 ×
54 Å3, deleting all water molecules within 2.7 Å of any
protein atoms, resulting in a total of 4461 water molecules,
giving rise to a total of 14281 atoms, including protein,
solvent, and counterions. There are 4519 fragments (58
amino acid residues and 4461 waters).

An MD simulation in the NPT ensemble at 300 K and 1
atm is carried out for 100 ps using the CHARMM22 force
field11 for protein and the three-point-charge TIP3P model47

for water to equilibrate the system. The resulting coordinates
are used as the initial structure for a 50 ps NVT MD
simulation at 300 K using the X-Pol potential.34-36 The box
length is set to 53.65 Å in the X-Pol calculations, which is
the average value from the MD simulation using the
CHARMM22 force field. A Nosé-Hoover thermostat48 is
used for temperature control.

All simulations utilized an integration time-step of 1 fs,
and the SHAKE algorithm49 is used to constrain bond
distances involving hydrogen atoms at the equilibrium values
defined in the CHARMM22 force field.11 Electrostatic
interactions between fragment pairs whose centers of mass
are separated beyond 11 Å are truncated (shifting or
switching can be introduced as a refinement in later work).
The convergence criterion for average diagonal elements of
the density matrix is set to 10-6.

All calculations were carried out using a locally modified
version of the CHARMM46 software package. The X-Pol
potential was initially developed based on a new semiem-
pirical code written by Walker et al.,50 and the current X-Pol
software is essentially entirely rewritten.

4. Results and Discussion

A snapshot of the BPTI structure at the end of the 50 ps
MD simulation using the X-POL potential is displayed in
Figure 2 along with the structure at the end of a 50 ps MD
simulation using the CHARMM22 force field and the crystal
structure 6PTI from the protein data bank (PDB). These
figures show that the secondary structures of BPTI retained
their configurations in 50 ps molecular dynamics simulations
employing the X-Pol potential (Figure 2a) in comparison with
the crystal structure (Figure 2c). It appears that the two
�-strand configurations are somewhat weakened from simu-
lations using the classical force field. Compared with the
crystal structure, the side chains show significant conforma-
tional change from both classical and X-Pol molecular
dynamics simulations; charged residues are more exposed
to the solvent on the protein surface. One realizes that the
semiempirical AM1 model was not developed to treat

intermolecular interactions accurately. Thus, we note that the
present X-Pol potential with the original AM1 quantum
mechanical method is not a quantitatively accurate force field
for performing quantitative studies of the dynamics of
solvated proteins. To achieve this goal, a reparameterized
and well-tested QM model is needed, and the development
of such a model is left for future research.

The fluctuation of the total potential energy is displayed
in Figure 3 for the entire 50 ps (50000 steps) of simulation,
showing that the energy exhibited an initial rise in the first
15 ps and then quickly settled to a stable average throughout
the rest of the simulation. At each MD step, about 7 iterations
were sufficient to achieve SCF convergence to an accuracy
of 10-6 in the electronic one-electron density matrix.

The main physical result of the present study is the extent
of electronic polarization and intramolecular charge transfer
in the solvated protein. The net charge from Mulliken
population analysis of the wave function for each carbonyl
group (CdO) in the protein backbone is calculated and
averaged for the last 30000 MD steps. The average net charge
on the backbone carbonyl (CdO) group of each residue along
the peptide chain is shown in Figure 4. We found that all
carbonyl groups bear a negative net charge, which is
reasonable since CdO is a strong electron withdrawing
group. The average net charges on the carbonyl groups range
from -0.05 to -0.16 (all partial charges are in units of a
proton charge), with 17 of them more negative than -0.10.
In comparison, the CHARMM22 force field11 employs fixed
partial atomic charges with the convention that the net group
charge for each carbonyl unit (CdO) is zero in the protein
backbone. Since it is computationally efficient for each group
charge to be zero (forcing groups of 2-10 atoms to be
perfectly neutral allows not only for more easily transferable
charge parameters but also for more efficient truncation of
long-range electrostatics3a), this can only be remedied in
conventional molecular mechanics calculations by using
larger units as groups and by parametrizing the groups to
allow different charges on carbonyl groups in different
environments. However, even if that is done, the charge on
each carbonyl group would be independent of time and
environment, neither of which is found to be the case in the
X-Pol calculations.

To analyze charge transfer effects between different
residues, we calculated the net charge of each residue by
Mulliken population analysis. Here, we note that formally
there is no charge transfer between fragments treated in the
X-Pol potential. However, effective charge transfer can be
observed through the boundary atom due to intrafragment
electronic polarization. Thus, it is possible that the electron
density of the two active orbitals in the (I-1)th residue (green
fragment in Figure 1) is depleted into the rest of the fragment,
whereas the two active orbitals in the Ith residue (red in
Figure 1) attract greater charge density in that fragment. Thus,
the net partial atomic charge on the boundary atom has
contributions from the charge densities of both neighboring
residues. In the following discussion, the term “charge
transfer” or excess charge is used to describe the difference
of the total Mulliken population charge of a formal residue
(not the peptide unit used in the definition of the QM
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fragment) in the protein and that of an isolated residue. Thus,
the dominant contributor to charge transfer in this model is
intrafragment polarization in the X-Pol representation. If one
is interested in charge transfer between two residues, for
example, in an ion pair, salt bridge, or hydrogen bond to a
charged residue, the two moieties between which charge
transfer is to be allowed should be treated as a single
fragment.

Figure 5 shows the excess charge (calculated by subtract-
ing the formal charge associated with the protonation state
from the Mulliken charge) for all residues averaged over the
last 30000 steps of MD simulations. The average excess
charge ranges from -0.06 to + 0.09. The excess charge of
the same type of amino acid at different locations in the
protein is displayed in Figure 6. This figure shows that charge
transfer can be quite different depending on the specific
position of a given residue as well as its environment and
the protein sequence, for example, the average excess charge
on phenylalanine ranges from -0.05 to +0.04, that on
cysteine from -0.04 to +0.04, and that on alanine from

Figure 2. (a) Snapshot of the BPTI structure from MD
simulation with the X-Pol potential, (b) snapshot of the BPTI
structure from MD simulation with the CHARMM22 force field,
and (c) X-ray crystal structure. Secondary structures are
shown in yellow for �-strands, in purple for R-helices, and in
gray and cyan for loops. Side chains are depicted in gray for
hydrophobic residues, in green for polar residues, in blue for
cationic reisdues, and in red for anionic residues.

Figure 3. Histogram of the potential energy (kcal/mol) during
the 50 ps molecular dynamics simulation of BPTI in water
using the X-Pol potential.

Figure 4. Average net partial charges (in atomic units) on
the backbone carbonyl (CdO) group of each amino acid
residue in BPTI. The carbonyls are arranged in order of
sequence number.

Figure 5. Average excess charge (in atomic units) for each
residue of BPTI in water. The residues are arranged in order
of sequence number. Note that Figures 5, 6, and 7(b) refer
to conventional residues, not to peptide units.
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-0.05 to +0.09. The instantaneous excess charges vary even
more widely.

In Figures 4-6 we reported averages for net carbonyl
charges and for excess residue charges over 30000 time
frames. Using the same data, we also computed standard
deviations for these 30000 time frames, and this provides a
measure of the variation of the instantaneous charges with
time (as the environment changes). These results are given
in Figure 7. This variation is different from the sequence
dependence of the average (shown in Figure 6), and it is a
feature of the true dynamics that a nonpolarizable force field
can never reproduce. Figure 7 shows that the standard
deviations are in the range of 0.03 to 0.05.

5. Computational Considerations and Future
Improvements

The total CPU time for the 50 ps simulation using a single
2.66-GHz SGI Altix XE 1300 Linux Cluster processor is
377 h, whereas it took 62.6 h to run 5 ps on a single 1.5-
GHz IBM Power4 processor. During each DSCF calcula-
tion, all one- and two-electron integrals are saved in the
memory although one has the option to calculate the
electron integrals on the fly. The number of one-electron
QM/MM integrals scales as N2 where N is the number of
fragments, and the total memory used to store one-electron
integrals is about 458 MB; however, the two-electron
integrals are only evaluated within each fragment and its

Figure 6. Average excess charge (in atomic units) for each residue of BPTI in water. The results for peptide units of the same
type are shown together. The ordering of the residues, to which the colors refer, is by sequence number. Negative excess
charges are shown below the baseline, and positive charges above it. The magnitude of the charge associated with each colored
segment is from the bottom of a given colored segment to the top, not from the baseline to the top/bottom of each color bar. So
the magnitude of charge associated with the residue with the longest colored segment is the largest.

Figure 7. Standard deviations of the charges shown in Figures 4 and 5: (a) partial charges (in atomic units) on the backbone
carbonyls and (b) excess charges on the residues.
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buffer fragments that share a boundary atom, so their
number scales as N, and the total memory used to store
two-electron integrals is merely 13 MB. In principle, by
reorganizing the algorithm, the X-Pol potential is highly
parallelizable, at least up to a number of processors equal
to the number of fragments, since fragments or groups of
fragments and the associated QM/MM integrals can be
distributed over processors, and the only messages to be
communicated for potential energy evaluation are the
DSCF updates to auxiliary density matrices, the buffer
density matrices, and the partial charges. A parallel version
of the X-Pol potential is currently being developed.

In the present X-Pol potential, atom-centered point charges
are calculated from class II Mulliken population analysis.
In future work, it may be worthwhile to explore other
approximations to the MM potential such as charges fitted
to electrostatic potentials (class III ESP charges),51 CM4 class
IV charges,52 or distributed multipoles.53

In the present study, charge transfer along the chain occurs
through boundary atoms, whereas charge transfer between
protein and solvent is not included. Although the present
study used small fragments (peptide units and water mol-
ecules), the method is very flexible, and one can use larger
fragments to include charge transfer between fragments not
connected by a chain of bonds or to include charge transfer
between connected fragments more self-consistently. For an
example of the latter, one can include in a single fragment
either neighboring peptide units or peptide units interacting
in secondary or tertiary structure via hydrogen bonds or salt
bridges. As mentioned above, one can include solute-solvent
charge transfer by, for example, treating a peptide unit and
a nearby water molecule (or molecules) as a single fragment.
Since water molecules exchange in and out of the first
solvation shell, such solute-solvent fragments should be
treated by an adaptive54 algorithm that allows such ex-
changes. For studying enzyme kinetics, one could take the
entire substrate and coenzyme to be a single fragment, if
desired.

An important objective in future work is to carefully
parametrize the quantum mechanical model to achieve the
desired accuracy for properties both in the gas phase and in
the condensed phase.

6. Concluding Remarks

We have demonstrated the applicability of an explicit
polarization (X-Pol) method31-36 to a solvated protein in a
water box with >104 atoms. The calculation presented here
is equivalent to a molecular dynamics simulation of a 14281-
atom system consisting of 29026 basis functions with direct
dynamics based on an explicit quantum mechanical electronic
wave function for the entire system plus a van der Waals
term for interfragment exchange repulsion and dispersion
forces. The present molecular dynamics simulation generated
a trajectory over a 50 ps time interval in an NVT ensemble
using an existing semiempirical model. Remarkably, on a
single processor without carefully optimizing the quantum
mechanical code, it is possible to run more than 3 ps of direct
dynamics per day. Whereas all atoms are treated quantum
mechanically in this simulation, a typical combined QM/

MM simulation treats only 101-102 atoms quantum me-
chanically (for example, the quantum-electronic-structure
subsystem had 69,55 47-60,56 53-56,57 102,58 and 7150

atoms in some recent studies). Analysis of the wave function
implies that the polarization and charge transfer effects are
significant in the condensed phase and protein. Water
molecules display a significant polarization effect in the
condensed phase. Carbonyl groups in the protein backbone
bear a negative net charge. The net charges of the backbone
carbonyl group in different amino acid residues are different
by an amount up to about 0.1 e which suggests that in some
cases intramolecular charge transfer needs to be considered
explicitly. Analysis of the excess charge of each amino acid
shows fluctuating charge transfer between amino acid
residues in the protein. The same residue may have signifi-
cantly different charge transfer effects depending on protein
sequence.

In closing, it is worthwhile to emphasize the differences
between the present linear scaling method and problem
decomposition by a divide-and-conquer-type59 approach.
Methodologically, X-Pol and divide-and-conquer are not
the same, even when the same quantum mechanical model
is used. Divide-and-conquer is a linear scaling method to
efficiently obtain a solution of the quantum mechanical
model (e.g., Hartree-Fock or Kohn-Sham equations) for
a large system. In contrast, X-Pol is a quantum mechanical
force field, whose energy is not the Hartree-Fock or
Kohn-Sham energy of the system. X-Pol is variational
and constitutes an efficient method that can be used to
run molecular dynamics simulations for a fully solvated
protein, whereas D&C requires many more SCF iterations
to obtain an energy that is accurate enough for gradients
(forces) in MD simulations. Although AM1 was used in
the present study for the purpose of proof of concept, the
X-Pol potential is designed as a force field to be
parametrized just as “standard” CHARMM, AMBER, or
OPLS force fields are parametrized.
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Abstract: We study the role that tunneling can play in the reaction dynamics of H atom transfer.
The small mass of the H atom offers it another, nonclassical route, from reactants to products,
tunneling through an activation barrier. In this work, we carefully define the portion of a reaction
rate constant that is caused by tunneling in such reactions. We do this by decomposing an
initial H atom wavepacket into above and below the barrier components. We show that for a
very particular decomposition, the quantum dynamics of the system can be separated into two
events: tunneling and above-the-barrier product production. We show for such decomposition
it is possible to determine a rate constant because of tunneling alone. Finally, we demonstrate
that from a single experimental observable, the overall decay of reactant concentration, one
can extract structural and dynamical information about the H atom transfer reaction.

I. Introduction

Recently there has been great interest in the role tunneling
plays in reaction dynamics, particularly enzyme catalyzed
H transfer reactions.1-10 As is well-known, the small mass
of the H atom offers it another, nonclassical route, from
reactants to products, tunneling through an activation barrier.
There have been experimental measures, calculations, and
talk in the literature on the role tunneling plays in catalyzed
H atom transfer.11-15 But, we feel, as of yet, tunneling in
such reactions has not been carefully defined. Consider the
following scenario: An experimentalist follows the dynamics
of H atom transfer for a short time and then deduces a first-
order rate constant, for example, by fitting the short-time
decay of reactant concentration to a decaying exponential.
Can this rate constant be considered as the “rate of tunnel-
ing”? One might argue if the barrier is large enough, the H
atom had no other way to get to products other than
tunneling, and yes indeed the measured rate constant is
representative of a tunneling rate. There is a problem with
this argument. What barrier is “high enough” to preclude
all other routes to product production other than tunneling?
The usual argument is that a barrier is too high for over the
barrier production if its energy is much greater than the

average of the thermal distribution of initial H atom energies
at the temperature at which the rate is measured. The problem
with this argument is that the H atom can be prepared in a
nonequilibrium state and is not distributed according to a
Boltzmann distribution. There have been arguments in the
literature, for example, that claim that enzymes could prepare
reactants in the most advantageous way as to approach
products.16-18 For example, an enzyme can cause the transfer
of electron density away from bonding or into antibonding
orbitals involved in binding the H atom to a donor atom of
a substrate. In this case the H-donor bond will elongate and
weaken, resulting in an H atom that is no longer in an
equilibrium state. This H atom is then described, at t ) 0,
by a wavepacket not at equilibrium. A classical H atom, at
zero temperature, prepared with energy, E0, has this single,
definite value of energy. The more correct view is that the
H atom is a quantum mechanical particle, and even at zero
temperature, is represented by a wavepacket having a
distribution of energies. Say the H atom must overcome an
activation barrier of energy EA to become products. The H
atom wavepacket at time zero, particularly if it is prepared
in a nonequilibrium state, can have energy components above
the barrier as well as components below the barrier. The
ensuing quantum dynamics of this reactive system contains
two events, an above-the-barrier H atom transfer from the
components of the wavepacket initially above the barrier at
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time zero and tunneling through the barrier caused by the
below the barrier components of the initial wavepacket. In
this scenario the initial, short-time, decay of reactants would
be dominated by the faster, above the barrier event, and the
deduced rate constant would have very little to do with
tunneling.

In this work we demonstrate that there is a reasonable
definition of a rate constant for tunneling alone in a reactive
event involving an atom that can tunnel through an activation
barrier. For such a separation of dynamics in a single reactive
event there has to be a rigorous definition of “components”
of an initial wavepacket above and below a reactive barrier.
We take the philosophy here that if we decompose an initial
wavepacket into two such components, these components
must satisfy two criteria.

The first one is that these two components must evolve
independently of one another. For example, if we decompose
the initial reactant wavepacket into an above the barrier and
a below the barrier component, the quantum dynamics of
the below the barrier component, that is, the one that
represents tunneling alone, should evolve independently of
the other component. If this is the case, then we could indeed
view the overall single reactive process as being composed
of a tunneling event and an above the barrier route to product
production. We will see that there is only one way to
decompose an initial wavepacket into these two components
where each component evolves independently of the other.
This is to expand the initial reactive wavepacket in the
eigenstates of the Ĥ operator governing the time evolution
of the initial wavepacket in the time-dependent Schrödinger
equation (TDSE).

The second criteria is that we must be able to extract, out
of the quantum dynamics of the system, a time-evolving
probability density for each event. We show that such a
division is possible for the common and ubiquitous double-
well reactive system and, thus, are able to extract out a rate
constant for tunneling alone.

This paper is organized as follows. In section II, we discuss
the theory. We describe how an initial, nonequilibrium, H
atom wavepacket can be decomposed into above and below
the barrier components. We show that for one, special,
decomposition, the ensuing dynamics of the system is
separable into a tunneling and an above the barrier compo-
nent. We also show in section II how this special decomposi-
tion of the initial H atom wavepacket yields a way to extract
out a rate constant for the transfer event that is due to
tunneling alone. In section III, we describe numerical results.
In section III, we also make the connection between the
theory presented and experimental observable quantities in
a kinetics experiment. We show that it may be possible for
an experimentalist to extract out a rate constant for tunneling
alone in an H transfer reaction, just from experimentally
observable data. Finally, in section IV, we discuss the results
and conclusions.

II. Theory

(a). Decomposition of an Initial Wavepacket. Consider
a quantum mechanical particle, such as an H atom, moving

in a single spatial dimension, x. For now we leave the
potential energy of the system unspecified. We assume that
the particle can undergo a “reaction” and transfer from a
reactant-side to a product-side of a reaction profile. We
assume that an activation barrier of energy, EA, spatially
divides the reactants and products from one another. The
reactants and products are separated by a dividing point at x
) x*. Thus, if the particle is at positions x < x*, it is
considered reactant, and is considered product if the particle
is at positions x > x*.

A classical particle, prepared with an energy E0 at a
temperature of T ) 0 has a single, definite value of energy
of E0. Thus, if this classical particle has E0 > EA, it would
have enough energy to overcome the activation barrier,
allowing a reaction to occur. If E0 < EA, then the particle
would not have enough energy to overcome the activation
barrier and no reaction would take place.

The situation is more complicated if we treat the particle
correctly, according to quantum mechanics. Say the particle,
prepared at time, t ) 0, is in a nonequilibrium state on the
reactant side of the reaction, and is represented by a wave
function,Ψ0(x,t ) 0). A particle represented by such a wave
function does not have a single value of energy, but rather
a distribution of energies, P(E). For example, the probability
of the particle having the activation energy is P(EA). The
wavepacket,Ψ0(x,t ) 0), contains some energy values greater
than EA and others that are less than EA. The components
with energy greater than EA have enough energy to overcome
the activation barrier. Thus, the components of the initial
wavepacket with E > EA do not get to products via
tunneling but become products much as a classical particle
would. If we want to ascribe a rate of reaction caused by
tunneling alone, we must be careful to exclude these
components of the initial wave function from consideration.
The components of the initial reactant wavepacket with
energy less than EA, on the other hand, can only become
products via tunneling and are the components of the initial
wavepacket that contribute to the portion of the reaction rate
caused by tunneling.

The initial wavepacket, Ψ0(x,t ) 0), evolves in time
according to the time-dependent Schrödinger equation (TDSE).
At time, t, the wavepacket evolves into Ψ(x,t), and the
probability of the particle being on the reactant side of the
barrier at this time is defined as PR(t) shown below

PR(t))∫x)-∞

x)x*
|Ψ(x, t)|2dx (1a)

If the reaction follows first-order kinetics PR(t) should decay
exponentially according to

PR(t)) e-κt (1b)

A method for determining the rate constant, κ, is as follows:
Evolve Ψ0(x,t ) 0), in time by solving the appropriate TDSE,
compute PR(t) by using eq 1a, and then fit the results to an
exponential according to eq 1b and extract out the value of
the rate constant κ. The problem with this method is that
the rate constant found using this approach would not only
include the components of Ψ0(x,t ) 0) that tunnel through
the barrier; it would also include the components of Ψ0(x,t
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) 0) that can energetically overcome the barrier. Thus, the
rate constant determined by such an algorithm would not
represent the rate of tunneling alone, but a combination of
tunneling and above-the-barrier dynamics. If one wants to
extract out a rate constant from the quantum dynamics just
from tunneling another algorithm must be used.

What we have in mind is the decomposition of the initial
reactant wavepacket into two components; Ψ0

-(x,t ) 0), the
component of initial wavepacket below, and Ψ0

+(x,t ) 0),
the component of initial wavepacket above the barrier, at t
) 0. We then decompose the initial wavepacket as

Ψ0(x, t) 0))Ψ0
+(x, t) 0)+Ψ0

-(x, t) 0) (2)

The initial wavepackets Ψ0
-(x,t ) 0) and Ψ0

+(x,t ) 0) evolve
according to the TDSE into Ψ-(x,t) and Ψ+(x,t), respectively.
We want to be able to assign two rates of product production,
κ- and κ+, where κ- is the rate of product production because
of tunneling alone, and κ+ is the rate of product production
due to above the barrier product production. The only way
for these rates to be well defined is if we could define two
probability densities, PR

-(t) and PR
+(t) as shown below

PR
-(t))∫x)-∞

x)x*

|Ψ-(x, t)|2dx (3a)

PR
+(t))∫x)-∞

x)x*

|Ψ+(x, t)|2dx (3b)

Both PR
-(t) and PR

+(t) should be decreasing functions of time
because they describe the loss of reactant. Our conjecture is
that there should be a wide disparity in the time-decay
between PR

-(t) and PR
+(t), with the loss of reactant through

tunneling, PR
-(t), being the slower process. For example, if

both PR
-(t) and PR

+(t) were each described by a single
exponential decay then we could write

PR
-(t) ∝ e-κ-t (4a)

PR
+(t) ∝ e-κ+t (4b)

where κ- is the rate constant for product production via
tunneling and κ+ is the rate constant for over the barrier
production of product. If our conjecture about the wide
disparity between the decay of PR

-(t) and PR
+(t) were true,

then we would find κ- , κ+. In the Numerical Results
section, we will say more about the particular functional
forms of PR

-(t) and PR
+(t).

We now explore if we can indeed decompose the quantum
dynamics of the system into two events: a tunneling event
and an above the barrier production event.

To show that such a partition of the quantum dynamics,
as shown in eqs 3a-4a, is possible, we now specify the
Hamiltonian operator, Ĥ, for the system as

Ĥ) -p2

2m
d2

dx2
+V*(x) (5)

where the first term is the kinetic energy operator and the
second term is potential energy of the system. The set of
eigenstates, {�n(x)} of any Ĥ operator forms a complete set
of states. Thus, the initial wavepacket, Ψ0(x,t ) 0), can be
expanded in terms of this complete set according to

Ψ0(x, t) 0))∑
n

cn|�n(x)〉 (6)

In the above equation, the set of eigenstates, {�n(x)} can be
a set of solutions to any time-independent Schrodinger
equation, and the basis coefficients, {cn}, can be determined
by the projections

cn ) 〈�n(x)|Ψ0(x, t) 0)〉 (7)

Thus, the {�n(x)}can be taken as the solutions of any time-
independent Schrödinger equation

Ĥ�n(x))En�n(x) (8)

where Ĥ is a Hamiltonian operator containing any potential
energy function, V(x) and the {En} are the set of eigenen-
ergies. Within this spectrum of eigenenergies are two subsets,
one, {E-} ) {E1, E2, E3,..., Em}, is the set of energies below
the barrier, and the other, {E+} ) {Em+1, Em+2,...}, is the
subset containing energies above the barrier. We can expand
each of the initial wave functions, Ψ0

-(x,t ) 0) and Ψ0
+(x,t

) 0)in this set of eigenstates as

Ψ0
-(x, t) 0))∑

j)1

m

cj|�j(x)〉 (9a)

Ψ0
+(x, t) 0)) ∑

j)m+1

cj|�j(x)〉 (9b)

Now we come to an important juncture. If the Ĥ operator
in eq 8 does not contain the potential energy, V*(x), of our
system, then the energies, {En}, are not the eigenenergies of
our system, and we would not be sure that the subset of
energies {E-} ) {E1, E2, E3,..., Em} truly represent compo-
nents of the initial reactant wave function that are below the
barrier. We now show that if the initial wavepacket was
expanded in a set of eigenstates that are not the eigenstates
of the V*(x) potential, then the wavepackets Ψ-(x,t) and
Ψ+(x,t) do not evolve independently of one another and the
separation of the quantum dynamics into separate tunneling
and nontunneling events would not make sense.

We now introduce a set of eigenfunctions, {ψn(x)}, which
are eigenfunctions of the Hamiltonian operator, Ĥ for our
system as described in eq 5. These eigenfunctions have an
associated set of eigenenergies,{En}, that are the true
eigenenergies of our system. We can then, unambiguously,
decompose this spectrum of energies into two subsets: {E-}
) {E1, E2,..., Em}, the set of energies having values less than
EA, and {E+} ) {Em+1, Em+2,...}, the set containing above
the barrier energies. This allows us to truly decompose the
initial wavepacket into above and below the barrier compo-
nents as

Ψ0
-(x, t) 0))∑

j)1

m

cj|ψj(x)〉 (10a)

Ψ0
+(x, t) 0)) ∑

j)m+1

cj|ψj(x)〉 (10b)

Now we consider the time-evolution of the initially
decomposed wavepacket. We write the wavepacket for all
times as
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Ψ(x,t))Ψ-(x, t)+Ψ+(x, t) (11)

This wavepacket evolves according to the TDSE shown
below

ĤΨ(x, t)) ip
∂Ψ(x, t)

∂t
(12)

Substituting eq 11 into the TDSE in eq 12 results in

Ĥ{Ψ-(x, t)+Ψ+(x, t)}) ip
∂{Ψ-(x, t)+Ψ+(x, t)}

∂t
(13)

If the time-evolution of our system is truly composed of
two separate independent dynamic events, then each event
should be governed by it’s own TDSE. Thus, there should
be a TDSE for the tunneling event and one for the above
the barrier dynamics. With this in mind, we decompose eq
13 into the following equations

ip
∂Ψ-(x, t)

∂t
) ĤΨ-(x, t) (14a)

ip
∂Ψ+(x, t)

∂t
) ĤΨ+(x, t) (14b)

We now explore the separability of the quantum dynamics
of the system into tunneling and above-the-barrier dynamical
components for a general expansion of Ψ0(x,t ) 0) in a
general set of eigenfunctions, {�n(x)}, as in eq 6. We define
the set of time-dependent basis coefficients corresponding
to eigenfunctions with energies below and above the barrier
as {c-(t)} and {c+(t)}, respectively. We solve the TDSE by
putting eq 6 into eq 13 to get

ip{∑
j)1

m

ċj
-(t)|�j(x)〉 + ∑

j)m+1

ċj
+(t)|�j(x)〉} )∑

j)1

m

cj
-(t)Ĥ|�j(x)〉 +

∑
j)m+1

cj
+(t)Ĥ|�j(x)〉 (15)

Now we multiply eq 15 on the left by, �l (x), an eigen-
function with an energy below the barrier, and then integrate
over all space to get

ipċl
-(t))∑

j)1

m

cj
-(t)Hl,j + ∑

j)m+1

cj
+(t)Hl,j (16)

In eq 16, the Hamiltonian matrix elements, Hl,j, are defined
by

Hl,j ) 〈�l (x)|Ĥ|�j(x)〉 (17)

According to eq 16, the time-evolution of cl
-(t), a basis

coefficient governing the dynamical evolution of a wave-
packet component below the barrier is not independent of
the above the barrier components of the wave function, that
is, Ψ+(x,t). This is because, as shown in eq 16, the differential
equation governing below the barrier coefficients, {c-(t)},
depends on above the barrier coefficients, {c+(t)}. Thus, in
a general expansion of the initial wavepacket in a general
set of eigenstates, {�n(x)}, we cannot separate the dynamics
into tunneling dynamics and above the barrier dynamics.
Now we ask if such a separation of dynamics is possible if
Ψ0(x,t ) 0) is expanded in the special set of complete states,

that is, {ψj(x)}, that are solutions of the TDSE with V)
V*(x), that is, the potential energy of the system being
studied. If we use these eigenstates as a basis, then the
Hamiltonian matrix elements in eq (17) become

Hl,j ) 〈ψl (x)|Ĥ|ψj(x)〉 )Εj〈ψl (x)|ψj(x)〉 )Εj · δl,j (18)

Equation 16 then, in this case, becomes

ċl (t))- i
p

Εl · cl (t) (19)

A similar differential equation obtains, for all the basis
coefficients, if we expand Ψ0(x,t ) 0) in the set of
eigenfunctions, {ψj(x)}, of our potential energy, V*(x). As
shown in eq 19, each below the barrier coefficient, cl (t),
evolves independently of all the others, and most importantly,
independently of the above the barrier coefficients, {c+(t)}.
This demonstrates that tunneling and over-the-barrier quan-
tum dynamics can be considered separately if we expand
Ψ0(x,t ) 0) in the set of eigenfunctions of the Ĥ operator,
that is, in the set {ψj(x)}. Within this expansion the basis
coefficients evolve according to

cl (t)) cl,0 · e
-

i

p
Εl t (20a)

where the initial value of the basis coefficients, cl ,0, are
calculated from

cl,0 ) 〈ψl (x)|Ψ0(x, t) 0)〉 (20b)

Thus far we have shown that the quantum dynamics of a
“reactive” system can be separated into two dynamic events:
tunneling and above the barrier transfer. We have also shown
that this separation is only obtained if the initial wavepacket
is decomposed in terms of the eigenstates of the system of
interest. We have not yet demonstrated that the total time
evolution of the probability density, PR,T(t), can be broken
up into two pieces as suggested by eqs 3b-4b. This must
be the case if we are to be able to ascribe a rate solely for
tunneling in a reaction. The total probability density of
reactant at a time t is given by

PR,T(t))∫x)-∞
x)x*

|Ψ(x, t)|2dx)∫x)-∞
x)x*

|Ψ-(x, t)+Ψ+(x, t)|2

(21)

The second equality comes from the definition of the
wavepacket,Ψ(x,t), in eq 11. We then expand out the square
in eq 21. Using the definition for the separate probability
densities given by eqs 3a, we can then write eq 21 as

PR,T(t))PR
-(t)+PR

+(t)+ 2 ·Re[∫x)-∞
x)x*

Ψ-(x, t) ·Ψ+(x, t)]

(22)

Thus, the definition of two probability densities, one for
tunneling, and one for above the barrier transfer, will only
be true if the last term in eq 22 is zero, or nearly so. To
show that this is indeed the case we now discuss the potential
energy under consideration here in more detail.

(b). Double-Well Potential. The double-well potential,
is by far, the most commonly used potential energy surface
used to describe the transfer of an atom from one moiety to
another.19,20 We consider a double-well potential as naturally
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arising from two diabatic states. We consider here a double-
well potential built out of two harmonic single-dimensional
diabatic states, a reactant state, VR(x), and a product state,
VP(x). These diabatic states are defined below

VR(x))
mωR

2

2
(x- xR

0 )2 (23a)

and

VP(x))
mωP

2

2
(x- xP

0)2 (23b)

Here {ωR,ωP}are the frequencies of the reactant and product
wells, respectively, and {xR

0 ,xP
0} are the minima of the wells.

These diabatic states are coupled to one another via a
coupling function, g(x), given by

g(x)) g0 · e
-R(x-x*)2

(24)

The degree of coupling between the states is set by the
coupling strength, g0, and the maximum coupling occurs at
the dividing point between reactants and products, x*. Thus,
we take the dividing line between reactants and products as
the value of position x* lying between the two
minima,{xR

0 ,xP
0}, and making VR(x*) ) VP(x*). The length

scale of the coupling is set by R. If R is large the coupling
between the states becomes more localized around the
crossing point, x*.

A well-known, and useful approximation, to the diabatic
system described above is it is adiabatic, double-well
analogue.20 In this approximation, there is a single wave-
packet describing the evolution of the system, Ψ(x,t), which
evolves on a single adiabatic potential, V*(x). This adiabatic
potential is taken as the lowest eigenvalue of the potential
energy matrix

V
≈
) [VR(x) g(x)

g(x) VP(x) ] (25)

This lowest eigenvalue describes a double-well potential and
is given by

V * (x))
VR(x)+VP(x)

2
-

√[VR(x)-VP(x]2 + 4 · g(x)2

2
(26)

The quantum dynamics of this system is fully described by
a single, time-evolving wavepacket, Ψ(x,t), that evolves
according to the TDSE

ip
∂Ψ(x, t)

∂t
) [T̂+V * (x)] ·Ψ(x, t) (27)

The initial adiabatic wavepacket is given by, Ψ(x,t ) 0) )
Ψ0(x,t ) 0), where Ψ0(x,t ) 0) is a wavepacket localized in
the reactant well, that is, having it’s maximum near to x )
xR

0 . This initial wavepacket can be decomposed into above
and below the barrier components, as described above, by
expanding it in the set of eigenfunctions of the time-
independent Schrödinger equation below

[T̂+V * (x)] ·Ψ(x))Ε ·Ψ(x) (28)

(c). Separation of the Probability Densities. We still
have to show that the definition of two probability densities,
that is, PR

-(t) for tunneling production and PR
+(t) for above

the barrier production of products makes sense. Above we
have shown that we can indeed ascribe two separate
probability densities for the dynamics of each event if eq 22
is true, that is, if the last term on the RHS is zero, or nearly
so.

It is well-known, that in a double well system as described
here, the eigenstates come in pairs. Each pair is composed
(approximately) of a plus and minus combination of the
eigenstates of VR(x) and VP(x). Specifically, we can write
the eigenstates of or system as

ψ2j+1(x) ≈ c2j+1{|Rj〉 + |Pj〉} j) 0, 1, 2, ... (29a)

and

ψ2j(x) ≈ c2j{|Rj-1〉 - |Pj-1〉} j) 1, 2, 3, ... (29b)

Here {|Rj〉 ,|Pj〉}are the eigenstates of VR(x) and VP(x),
respectively. [Note these are harmonic oscillator eigenstates,
whose index conventionally starts at j ) 0.] The |Rj〉
eigenstates are localized on the reactant side of the double-
well potential, and the |Pj〉 eigenstates are localized in the
product well and are nearly zero in the region x ) -∞ f
x*. Since the integral in eq 22 runs from x ) -∞f x*, that
is, the portion of space where the |Pj〉 components of
the{ψj(x)}are nearly zero we can define components of
Ψ+(x,t) and Ψ-(x,t) that contribute to the integral in eq 22
as �+(x,t) and �-(x,t) as shown below

�-(x, t))∑
j)0

m

(c2j+1 + c2j+2) · |Rj(x)〉 (30a)

and

�+(x, t)) ∑
l )m+1

m

(c2l +1 + c2l +2) · |Rl (x)〉 (30b)

The integral in eq 22 then becomes

∫x)-∞
x)x*

[Ψ-(x, t)]* ·Ψ+(x, t)dx ≈∫x)-∞
x)x*

[�-(x, t)]* · �+(x, t)dx

(31)

Substitution of eq 30a into eq 31 shows that the integral in
eq 22 is composed of a sum of terms of the form
∫x)-∞

x)x* Rj(x) ·Rl(x) dx with j * l in each case. Since the |Rj〉
eigenstates are nearly orthogonal over this interval, the
integral in eq 31 and, hence, the one in eq 22 are nearly
zero. This means that the separation of the evolved prob-
ability densities into a tunneling and above the barrier
probability density can be achieved. There are two important
points to make about this argument. First, the last term on
the RHS of eq 22 is only very small if the initial wavepacket,
Ψ0(x,t ) 0), is expanded in the exact eigenstates of the
double-well system, {ψj(x)}. Second, there is one case where
eq 22 will not be even approximately true. This is the case
where the plus eigenstate |Rj〉 + |Pj〉 is below the barrier and
its companion |Rj〉 - |Pj〉 is above. In this case, there will be
a large contribution to the integral from a term of the form
∫x)-∞

x)x* Rj(x) ·Rl(x) dx with j ) l, which is not zero and is in
fact approximately unity. But, in all cases studied, we have
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not found a case where this situation occurs. Thus, we feel
that this happens rarely enough to be neglected.

III. Numerical Results

For all calculations we use the lower adiabatic, double-well,
potential given by V*(x) in eq 26. Some parameters are
constant throughout the calculations and we discuss these
first. Since we plan to focus on tunneling, we choose the
mass of the system, m, to be that of an H atom, mH. We also
explore the isotope effect on the tunneling dynamics by
setting the system mass to that of a Deuteron in some
calculations, in these cases m ) 2mH. The minima of the
reactant and product wells, that is, xR

0 and xP
0, in eqs 25-26

are 3.0 and 4.25 Å, respectively. Thus, in all calculations
the distance between the well minima is 1.25 Å. The
frequency of the product well, ωP, is ωP ) 2000 cm-1 in all
calculations. We take the length scale of the nonadiabatic
coupling, R, to be 1.0 Å-2 in all calculations. Some
parameters are varied to explore their effect on the quantum
dynamics of the system. The reactant well frequency, ωp,
varies between 1500 and 2000 cm-1. The nonadiabatic
coupling strength, g0, is varied between 100 and 220 kJ
mol-1. These coupling strengths result in barrier heights, EA,
ranging between 45 and 125 kJ mol-1.

The eigenstates, {ψj}, of the double-well potential are
calculated by using a particle in a box basis set. The spatial
grid runs from x ) 0 Åf x ) 6 Å, with 256 equally spaced
grid points. In all calculations the results converged with a
basis set comprised of 100 basis functions.

The initial wavepacket of the system, Ψ0(x,t ) 0), is
localized on the reactant side of the potential and is taken
as the Gaussian shown below

Ψ0(x, t) 0)) (mω0

πp )
1

4 · exp{-(mω0

2p ) · [x- (xR
0 - δx)]2}

(32)

The width of the initial wavepacket is set by the frequency,
ω0, which we take as 2000 cm-1 in all calculations. The
initial displacement of the wavepacket from equilibrium is
controlled by the parameter δx in eq 32. If δx ) 0, then the
wavepacket is centered at its equilibrium position at t ) 0
in the reactant well. As δx increases the initial reactant
wavepacket is displaced more from equilibrium and, thus,
possesses more initial energy.

As described previously, this initial wavepacket is then
expressed as a superposition of the eigenstates of the system,
that is, {ψj}, and further broken down into below and above
the barrier components as described in eqs 2, 9a and 9b.
We chose to study a system where there is no chance for
reactant that has crossed the dividing point x ) x* to recross
and go back toward reactants. To do this we need a
mechanism for pulling probability density off of the product
well. We cannot do this by evolving the basis coefficients
as shown in eq 20a. We carry this out by discretizing the
initial wavepackets on a spatial grid and solving the TDSEs
in eqs 14a and 14b via the Feit-Fleck split operator
technique. We are then able to pull probability density off
of the product state by setting Ψ(x,t) ) 0 for all x > xP

0

during the course of the time-evolution of the wavepackets.
For all calculations in which we solve the TDSE, the spatial
grid is the same as that for the basis set calculations and the
time step is dt ) 0.01 fs.

In Figure 1a, we show the double-well potential when ωR

) ωP ) 2000 cm-1 with a nonadiabatic coupling strength
of g0 ) 230 kJ mol-1. This leads to a double-well potential
with a barrier height of EA ) 45 kJ mol-1, which is the lowest
barrier considered. The eigenenergies of this system, {E},
are shown as horizontal lines inside the potential. There are
6 eigenstates below the barrier, and as described above, they
come in pairs of two. All the other eigenenergies that are
above the barrier are no longer paired as those below.

In Figure 1b, we show the initial wave function and its
below and above the barrier components when the initial
wave function is displaced by an amount δx ) 0.25 Å from
equilibrium at t ) 0. The thick solid line in Figure 1b is the
square of the total wave function, Ψ0(x,t ) 0), which is
centered at position xR

0 - δx ) 2.75 Å. The thick dashed
line is the square of the below the barrier component of the
initial wave function, Ψ0

-(x,t ) 0), of the initial wave

Figure 1. (a) Double-well potential when ωR ) ωP ) 2000
cm-1 with a nonadiabatic coupling strength of g0 ) 230 kJ
mol-1. The eigenenergies of this system, {E}, are shown as
horizontal lines inside the potential. (b) The squares of the
initial wave function and it is below and above the barrier
components as described in the text with the thick solid line
as the total wave function, the thick dashed line as the below
the barrier component and the thin solid as the above the
barrier component.
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function. The thin solid line in Figure 1b is the square of
the above the barrier component, Ψ0

+(x,t ) 0), of the initial
wave function. Note that the more energetic above the barrier
component has more nodes than the below the barrier
component, which is consistent with it being the more
energetic component. Further, the maximum of the above
the barrier wavepacket, Ψ0

+(x,t ) 0), occurs at x ≈ 2.6 Å,
which is 0.4 Å from equilibrium. The maximum of the below
the barrier component, on the other hand, occurs at x ≈ 3.0
Å, which is where the equilibrium of the reactant well occurs.
Thus, the component of the wave function that is responsible
for product production through tunneling is that component
of the initial reactant wavepacket that is nearly at equilibrium
on the reactant state.

We now consider the ensuing quantum dynamics of this
initially displaced wavepacket. We express this wavepacket
as a superposition of the double-well eigenstates and form
Ψ0

-(x,t ) 0) and Ψ0
+(x,t ) 0) according to eqs 10a and 10b.

We can determine how much of the wavepacket is above
and below the barrier at t ) 0, that is, PR

-(t ) 0) and PR
+(t )

0), respectively, from

PR
-(t) 0))∫-∞

+∞
|Ψ0

-(x, t) 0)|2 · dx (33a)

and

PR
+(t) 0))∫-∞

+∞
|Ψ0

+(x, t) 0)|2 · dx (33b)

With an initial displacement of the wavepacket of δx ) 0.25
Å PR

-(t ) 0) ) 0.5 and PR
+(t ) 0) ) 0.5. Thus, in this case

half the initial wavepacket contains energy components above
the barrier. We then evolve Ψ0

-(x,t ) 0) and Ψ0
+(x,t ) 0) in

time according to eqs 14a and 14b using the Feit-Fleck
operator algorithm,21 and in Figure 2a, we show the evolution
of the total reactant probability density, PR,T(t). The solid
line is approximation to the total reactant probability density
obtained when we separate it into it is PR

-(t) and PR
+(t)

components and set PR,T(t) ≈ PR
-(t) + PR

+(t). The dashed line
in Figure 2a is the exact total reactant probability density.
We obtain this probability density by evolving the whole of
the initial wavepacket, Ψ0(x,t ) 0), in time according to the
TDSE in eq 12. The close agreement between the solid and
dashed lines shows that, indeed, in this case the total reactant
probability density can be split up into its below and above
the barrier components. In fact, we have found that this was
the case in all calculations we have performed. Although it
may not be obvious from Figure 2a, the time-evolution of
the reactant probability density does not follow a single
decaying exponential.

Again, we assume that there is a large separation between
the time scales of tunneling and over the barrier production.
We still need to choose particular functional forms for PR

-(t)
and PR

+(t) to quantify these time scales. For simplicity, we
take both PR

-(t) and PR
+(t) as being described by an expo-

nential decay as described in eq 4a. It is important to keep
in mind that we have offered no proof that each of PR

-(t)
and PR

+(t) should be exactly represented by a single expo-
nential decay. In fact, if each below the barrier eigenstate
decayed exponentially then the aggregate decay because of
tunneling, PR

-(t), should not be exactly represented by a single

decaying exponential but rather by a sum of decaying
exponentials. We are assuming that a comparison of the two
dynamic events, that is, tunneling and over the barrier
production, could be well quantified by treating both events
as first order events. The following numerical results will
demonstrate that this assumption has some validity.

The thicker solid line in Figure 2a shows the best single
exponential fit of PR,T(t). In Figure 2b, we show the evolution
of the below the barrier component of the wavepacket, that
is, PR

-(t). This probability density represents what we are
claiming is the tunneling dynamics of the system. The thicker
solid line in Figure 2b shows the best fit to PR

-(t) to a single,
decaying, exponential. The tunneling dynamics alone fits a
single exponential decay much more closely than that of the
whole time evolution of the probability density. We extract
out a rate constant for tunneling from the exponential fit in
Figure 2b according to eq 4a and find, in this case, κ- ) 7.5
× 10-6 au. In Figure 2c, we show the evolution of the above
the barrier probability density, that is, PR

+(t). The thick solid
line in Figure 2c shows the best single decaying exponential
fit to PR

+(t). Although the single exponential fit of PR
+(t) is

not as good as that of PR
-(t) the fit does follow the overall

decay trend pretty well. We extract out a rate constant for
above the barrier product production from the exponential
fit in Figure 2c according to eq 4b and find, in this case, κ+

) 5.3 × 10-4 au. There is a large separation of time scales
between the product production through tunneling, that is,
κ-, and the above the barrier production, that is, κ+. In this
case, in fact, there is a 2 orders of magnitude difference,
with the tunneling being the slower process.

Now lets discuss the results in Figure 2 from an experi-
mental viewpoint. The only observable that an experimental-
ist can measure is the total reactant probability density, that
is, PR,T(t). If an experimentalist follows the decay of reactant
concentration they would generate a concentration versus
time profile like that shown by the thin solid line in Figure
2a. We have shown that this time profile results from two
different dynamic routes toward product production: tunnel-
ing and above the barrier production. Further, the separation
in time scales of these two events is very large. Thus, how
can an experimentalist go from a measured concentration
versus time profile like that in Figure 2a and extract out a
“tunneling rate”? We offer an answer here.

We have shown that the total probability density, at least
for a double-well potential, can be written as a sum of two
distinct probability densities: PR,T(t) ≈ PR

-(t) + PR
-(t). Thus,

if both of the dynamic events, tunneling and above the barrier
production are first-order events then each of PR

-(t) and PR
+(t)

will decay exponentially and perhaps we can write the overall
decay of the reactant concentration in time as

PR,T(t))PR
-(0) · e-κ-t +PR

+(0) · e-κ+t (34)

Here, {PR
-(0), PR

+(0)} are the below and the above the barrier
probability densities contained in the initial wavepacket as
described in eqs 33a and 33b. The two rate constants, {κ-,
κ+}, are the rate constants for product production through
tunneling and above the barrier transfer, respectively. Thus,
we are claiming that the overall decay of the reactant
concentration should follow, at least approximately, a biex-
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ponential decay. To explore the validity of this claim we fit
the decay of the total reactant probability, PR,T(t), to a
biexponential of the form

PR,T(t)) a0 · e
-a1t + b0 · e

-b1t (35)

using the Levenberg-Marquardt algorithm.22 In performing
this fit, we did not use initial guesses that reflect the fact
that a0 ) PR

-(0) and b0 ) PR
+(0). This is because an

experimentalist would not know this information; all they
know is the observed total decay of the reactant concentration
in time. In all calculations we use the initial guesses for the
fit parameters of a0 ) a1 ) b0 ) b1 ) 0.1. In Figure 2d, we
show the biexponential fit to the PR,T(t) in Figure 2a. The
solid line is the fit, and the dashed line is the decay of total
reactant probability density. As shown by Figure 2d, the time
profile PR,T(t) is fit extremely well with a biexponential decay.
In this fit, the parameters in eq 35 were as follows: a0 ) 0.5
au, a1 ) 7.7 × 10-6 au, b0 ) 0.5 au, b1 ) 4.3 × 10-4 au. A
comparison of eqs 34 and 35 shows that {a1,b1} ) {κ-,κ+},
and {a0,b0} ) {PR

-(0),PR
+(0)}. As shown in Figure 2b, the

tunneling rate constant was found to be κ- ) 7.5 × 10-6

au, which compares very favorably to the biexponential fit
parameter, a1 ) 7.7 × 10-6 au. The over the barrier rate
constant found from the single exponential fit in Figure 2c
was κ+ ) 5.3 × 10-4 au, which compares very favorably to
the biexponential fit parameter, b1 ) 4.3 × 10-4 au. Finally,
as described above, for the case represented by Figures (2)
the initial probability densities were {PR

-(0),PR
+(0)} )

{0.5,0.5}, which compares very favorably to the fit parameter
values of {a0,b0} ) {0.5,0.5}.

In Figure 3, we show results for the same case as Figure
2, but now the initial wavepacket is displaced by an amount
δx ) 0.10 Å from equilibrium at t ) 0. With this initial
displacement of the wavepacket, PR

-(t ) 0) ) 0.935 and PR
+(t

) 0) ) 0.065. Thus, in this case only ∼5% of the initial
wavepacket contains energy components above the barrier.
In Figure 3a, we show the decay of the total reactant
probability density in time with the dashed line. The solid
line is the best biexponential fit to PR,T(t). The parameters
from the fit lead to the values for the two rate constants of
κ- ) 1.5 × 10-6 au for the tunneling rate and κ+ ) 2.1 ×
10-4 au for the above the barrier rate. In Figure 3b, we show
the time evolution of the PR

-(t) probability density with a
solid line. The dashed line in Figure 3b is the best single
exponential fit which leads to another value for the tunneling
rate constant: κ- ) 1.8 × 10-6 au. Again, an experimentalist
can only observe the data reflected in Figure 3a, that is, the
time evolution of PR,T(t). From the observable data along
with a biexponential fit the experimentalist would conclude
that the tunneling rate is κ- ) 1.5 × 10-6 au, which is in
very good agreement to the actual rate of tunneling from
the unobservable, but theoretically calculated value of κ- )
1.8 × 10-6 au. In Figure 3c, we show the time evolution of
the above the barrier probability density, PR

+(t) (thin line).
The thick solid line is the best single exponential fit to PR

+(t),
which leads to another value of κ+ of κ+ ) 1.6 × 10-4 au,
which compares favorably to the rate extracted from the
experimentally realizable data of κ+ ) 2.1 × 10-4 au.

Figure 2. Evolution of the reactant probability density, PR(t ), in the
potential energy shown in Figure 1(a) and an initial displacement of
δx ) 0.25 Å: (a) the exact total reactant probability density
(dashed line) and the approximate probability density (thin solid
line). The thicker solid line shows the best single exponential fit
of PR,T(t ). (b) The evolution of the below the barrier probability
density, PR

-(t ) (thin solid line), and the best single exponential fit
(thick solid line). (c) Evolution of the above the barrier probability
density, that is, PR

+(t ) (thin solid line), and the best exponential
fit (thick solid line). (d) The biexponential fit to the reactant
probability density, PR(t ) (thick solid line), and the exact total
reactant probability density (dashed line).

Model of an H Transfer Reaction J. Chem. Theory Comput., Vol. 5, No. 3, 2009 475



Next, we explore if the claims above hold for systems with
a larger barrier between the reactants and products. In Figures
4 and 5, we show results for a system with potential
parameters of ωR ) ωP ) 2000 cm-1 and a nonadiabatic
coupling strength of g0 ) 150 kJ mol-1. This leads to a
double well potential with a barrier height of EA ) 125 kJ
mol-1. In this case 12 eigenstates are below the barrier, and
as described above, they come in pairs of two. In Figure 4,

Figure 3. The evolution of the reactant probability density,
PR(t ) in the potential energy shown in Figure 1a and an initial
displacement of δx ) 0.10 Å: (a) the exact total reactant
probability density (dashed line), and the biexponential fit (solid
line). (b) The evolution of the below the barrier probability
density, PR

-(t ) (thin solid line) and the best single exponential
fit (thick solid line). (c) Evolution of the above the barrier
probability density, that is, PR

+(t ) (thin solid line) and the best
exponential fit (thick solid line). Figure 4. Evolution of the reactant probability density, PR(t ), in a

double-well potential with a barrier height of 125 kJ mol-1 and an initial
displacement of δx ) 0.30 Å: (a) the exact total reactant probability
density (dashed line), the approximate probability density (thin solid line).
The thicker solid line shows the best single exponential fit of PR,T(t ). (b)
The evolution of the below the barrier probability density, PR

-(t ) (thin solid
line) and the best single exponential fit (thick solid line). (c) Evolution of
the above the barrier probability density, that is, PR

+(t ) (thin solid line)
and the best exponential fit (thick solid line). (d) The biexponential fit to
the reactant probability density, PR(t ), (solid line) and the exact total
reactant probability density (dashed line).
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we show results when the initial reactant wavepacket is
displaced by an amount δx ) 0.3 Å from equilibrium at t )
0. With this displacement and this potential, the initial below
and above the barrier probability densities are PR

-(t ) 0) )
0.85 and PR

+(t ) 0) ) 0.15, respectively. In Figure 4a, we
show the evolution of the total reactant probability density,
PR,T(t). The thin solid line is approximation to the total
reactant probability density obtained when we separate it into
it’s PR

-(t) and PR
+(t) components and the dashed line in Figure

4a is the exact total reactant probability density. Because
the thin solid and dashed lines are in close agreement, the
dynamics of the system is separable into below and above
the barrier probability densities even with a larger barrier.
The thicker solid line in Figure 4a shows the best single
exponential fit to the data, which is poor. In Figure 4b, we
show the evolution of the below the barrier component of
the wavepacket, that is, PR

-(t) (thin line). The thick line in
Figure 4b shows the best fit of PR

-(t) to a single, decaying,
exponential. Again, the tunneling dynamics alone fits a single
exponential decay much more closely than that of the whole
time evolution of the probability density. We extract out a
rate constant for tunneling from the exponential fit in Figure
4b and find, in this case, κ- ) 4.8 × 10-6 au. The thin line
in Figure 4c is the evolution of the above the barrier
probability density, that is, PR

+(t). The thick line in Figure
4c shows the best single decaying exponential fit to PR

+(t).

We extract out a rate constant for above the barrier product
production from the exponential fit in Figure 4c and find, in
this case, κ+ ) 4.3 × 10-4 au. In Figure 4d, we show the
decay of the total reactant probability density in time with
the dashed line. The solid line is the best biexponential fit
to PR,T(t). The parameters from the fit lead to the values for
the two rate constants of κ- ) 3.6 × 10-6 au for the tunneling
rate and κ+ ) 3.0 × 10-4 au for the above the barrier rate.
Again, these values represent information that can be
extracted from the experimentally observable total rate of
decay of reactant concentration. These values compare
favorably with calculated separate tunneling and above the
barrier rates of κ- ) 4.8 × 10-6 au and κ+ ) 4.3 × 10-4

au, respectively.
In Figure 5, we show results when the initial reactant

wavepacket is displaced by an amount δx ) 0.25 Å from
equilibrium at t ) 0. With this displacement and this
potential, the initial below and above the barrier probability
densities are PR

-(t ) 0) ) 0.95 and PR
+(t ) 0) ) 0.05,

respectively. In Figure 5a, we show the evolution of the total
reactant probability density, PR,T(t). The dashed line is the
total reactant probability density and the solid line best
biexponential fit to PR,T(t). The parameters from the fit lead
to the values for the two rate constants of κ- ) 2.2 × 10-6

au for the tunneling rate and κ+ ) 2.3 × 10-4 au for the
above the barrier rate. The thin line in Figure 5b shows the
evolution of the below the barrier component of the wave-
packet, that is, PR

-(t). The thicker solid line in Figure 4b
shows the best fit of PR

-(t) to a single, decaying, exponential.
We extract out a rate constant for tunneling from the
exponential fit in Figure 5b and find, in this case, κ- ) 2.6
× 10-6 au. We extract out a rate constant for above the
barrier product production from the exponential fit to PR

+(t)
and find, in this case, κ+ ) 2.2 × 10-4 au.

All the results described thus far were for symmetric
double-well potentials, that is, potentials that result from
diabatic states with the same frequencies, ωR ) ωP. Now
we see if the quantum dynamics is separable into tunneling
and above the barrier components for asymmetric potentials.
In Figure 6, we show results for a double well potential with
ωR ) 1500 and 2000 cm-1 with nonadiabatic coupling
strength of g0 ) 150 kJ mol-1. In this case the barrier has a
value of EA ) 45 kJ mol-1. We consider the dynamics of an
initial reactant wavepacket that is displaced by an amount
δx ) 0.25 Å at t ) 0. With this displacement and this
potential, the initial below and above the barrier probability
densities are PR

-(t ) 0) ) 0.75 and PR
+(t ) 0) ) 0.25,

respectively. In Figure 6a, we show the evolution of the total
reactant probability density, PR,T(t). Again, the solid line is
approximation to the total reactant probability density
obtained when we separate it into it is PR

-(t) and
PR
+(t)components and the dashed line in Figure 6a is the exact

total reactant probability density. Since the solid and dashed
lines are in close agreement, the dynamics of the system is
separable into below and above the barrier probability
densities even for asymmetric double-well potentials. The
solid line in Figure 6b shows the evolution of the below the
barrier component of the wavepacket, that is, PR

-(t). The
dashed line in Figure 6b shows the best fit of PR

-(t) to a single,

Figure 5. Evolution of the reactant probability density, PR(t ),
in a double-well potential with a barrier height of 125 kJ mol-1

and an initial displacement of δx ) 0.25 Å: (a) the exact total
reactant probability density (dashed line) and the biexponential
fit (solid line). (b) The evolution of the below the barrier
probability density, PR

-(t ) (thin solid line) and the best single
exponential fit (thick solid line).

Model of an H Transfer Reaction J. Chem. Theory Comput., Vol. 5, No. 3, 2009 477



decaying, exponential. Again, the tunneling dynamics is well
represented by a single exponential. We extract out a rate
constant for tunneling from the exponential fit in Figure 6b
and find, in this case, κ- ) 7 × 10-7 au. This is an order of
magnitude smaller than the tunneling rate constant for the
symmetric potential with the same barrier, that is, EA ) 45
kJ mol-1 discussed in Figure 2. The thin line in Figure 6c
shows the time evolution of the above the barrier probability
density, PR

+(t). The thick solid line in Figure 6c shows the
best single decaying exponential fit to PR

+(t). Again, the single
exponential fit of PR

+(t) is not as good as that of PR
-(t) the fit

does follow the overall decay trend pretty well. We extract
out a rate constant for above the barrier product production
from the exponential fit in Figure 6c and find, in this case,
κ+ ) 6.5 × 10-5 au. In Figure 6d, we show the decay of the
total reactant probability density in time with the dashed line.
The solid line is the best biexponential fit to PR,T(t). The
parameters from the fit lead to the values for the two rate
constants of κ- ) 6 × 10-7 au for the tunneling rate and κ+

) 1 × 10-4 au for the above the barrier rate. Again, these
would be the rates that could be extracted from experimen-
tally measured data. The rate constant for tunneling extracted
in this way compares very well to the unobservable, but
calculable, tunneling rate in Figure 6b of κ- ) 7 × 10-7 au.

Now we explore the isotope effect on the tunneling rate
constant, κ-. We study the same potential as in Figures 4.
The potential parameters of ωR ) ωP ) 2000 cm-1 and a
nonadiabatic coupling strength of g0 ) 150 kJ mol-1 leading
to a barrier height of EA ) 125 kJ mol-1.

Now we change the mass of the system to that of a D
atom, m ) 2 mH. When the system had the mass of the H
atom there were 12 eigenstates below the barrier, now with
the D atom there are 16 eigenstates below the barrier. This
is consistent with the decrease in spacing between the energy
levels with increasing mass. We study the quantum dynamics
of the system when the initial wavepacket is displaced an
amount δx ) 0.25 Å at t ) 0. In Figure 7a, we show the
time evolution of the total reactant probability density, PR,T(t)
with the dashed line and the best biexponential fit with the
solid line. The fit parameters lead to values of κ- ) 5.4 ×
10-7 au and κ+ ) 9.6 × 10-5 au. Note that the tunneling
rate constant was κ- ) 2.2 × 10-6 au for the same potential
and initial conditions for the H atom. As expected the rate
constant is significantly smaller, by nearly an order of
magnitude, for tunneling of the heavier D atom. In Figure
7b, we show the time evolution of the below the barrier
component of the wavepacket, that is, PR

-(t). The thicker solid
line in Figure 7b shows the best fit of PR

-(t) to a single,
decaying, exponential. Again, the tunneling dynamics is well
represented by a single exponential. We extract out a rate
constant for tunneling from the exponential fit in Figure 6b
and find, in this case, κ- ) 5.4 × 10-7 au. This rate constant
closely agrees to the experimentally observable value
obtained from the biexponential fit. Although, not shown,
we fit the above the barrier probability density to a single
exponential and found that it agrees with that of the
biexponential fit, that is, κ+ ) 9.6 × 10-5, within 5%.

We now say a little more about the assumption that the
two dynamic events, that is, tunneling and over the barrier

Figure 6. Evolution of the reactant probability density, PR(t ) in
the asymmetric double-well potential as discussed in the text
and an initial displacement of δx ) 0.25 Å: (a) the exact total
reactant probability density (dashed line) and the approximate
probability density (solid line). (b) The evolution of the below the
barrier probability density, PR

-(t ) (thin solid line) and the best
single exponential fit (thick solid line). (c) Evolution of the above
the barrier probability density, that is, PR

+(t ) (thin solid line) and
the best exponential fit (thick solid line). (d) The biexponential fit
to the reactant probability density, PR(t ), (solid line) and the exact
total reactant probability density (dashed line).
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production, can be treated as first order events. In Figure
8, we show the decay of some of the individual eigenstates
for a barrier height of EA ) 45 kJ mol-1 and initial
wavepacket displacement of δx ) 0.25 Å. [The same
system as that described by Figures 2.] As described
previously, there are 6 eigenstates below the barrier and
of these 6 only j ) 2, 4, 6 contribute appreciably to the
initial wavepacket superposition. In Figure 8a, we show
the decay of the j ) 4 and 6 eigenstates with the open
and solid circles, respectively. The solid line shows a
single, decaying, exponential fit to each. As shown by
Figure 8a, each eigenstate decays exponentially and the
aggregate decay of the below the barrier eigenstates, that
is, the function PR

-(t), should be more accurately repre-
sented by the weighted sum of decaying exponentials as
shown below.

PR
-(t))∑

j)1

m

|cj,0|
2 · e-κjt (35a)

In eq 35, the {cj,0}are obtained from eq 20b, and the {κj}
are the decay constants for the eigenstates. In Figure 8a, the
decay constants for the j ) 4 and 6 eigenstates are κ4 ) 1.6
× 10-6 au and κ6 ) 3.9 × 10-5 au. Although not shown in

Figure 8a, we have found the decay constant for the j ) 2
eigenstate is κ2 ) 1.8 × 10-8 au. We define a weighted
average of these below the barrier decay constants as

〈κ-〉 )∑
j)1

m

|cj,0|
2 · κj (36a)

This weighted average yields an average decay for the below
the barrier eigenstates as 〈κ-〉 ) 5.5 × 10-6 au. This
compares favorably to the single exponential fit to PR

-(t),
which had an exponent of κ- ) 7.5 × 10-6 au.

In Figure 8b, we show the decay of j ) 7 and 11, both
above the barrier eigenstates with the open and solid circles,
respectively. The solid line shows a single, decaying,
exponential fit to each. Again, both of the individual
eigenstates decay exponentially. The j ) 7 eigenstate is the
first above the barrier eigenstate, and it decays with a decay
constant of κ7 ) 2.1 × 10-4 au. This is a very revealing
result. The energy separation between the last below the
barrier eigenstate (j ) 6) and the first above the barrier
eigenstate (j ) 7) is only 8 kJ mol-1, but the decay constant

Figure 7. Evolution of the reactant probability density, PR(t )
for deuterium in a double-well potential with a barrier height
of 125 kJ mol-1 and an initial displacement of δx ) 0.25 Å:
(a) the exact total reactant probability density (dashed line)
and the biexponential fit (solid line). (b) The evolution of the
below the barrier probability density, PR

-(t ) (thin solid line) and
the best single exponential fit (thick solid line).

Figure 8. Evolution of the individual eigenstates as discussed
in the text for a barrier of 45 kJ mol-1 and an initial
displacement of δx ) 0.25 Å: (a) the evolution of the j ) 4
(open circles) and j ) 6 (solid circles) below the barrier
eigenstates. The solid lines are the best, single, exponential
fits to each. (b) the evolution of the j ) 7 (open circles) and j
) 11 (solid circles) above the barrier eigenstates. The solid
lines are the best, single, exponential fits to each.
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of the above the barrier, j ) 7, eigenstate is nearly 2 orders
of magnitude larger. For comparison, the j ) 7 and 8
eigenstates are also separated by about 8 kJ mol-1 in energy,
but the decay constant for the j ) 8 eigenstate is κ8 ) 2.3 ×
10-4 au, that is, nearly the same as the j ) 7 eigenstate.
Further, the j ) 11 eigenstate, shown via the solid circles in
Figure 8b, has a decay constant of κ11 ) 5.4 × 10-4 au,
only twice as large as the j ) 7 eigenstate, even though it is
nearly 40 kJ mol-1 higher in energy. In fact, all the above
the barrier eigenstates between j ) 7 and j ) 15, have decay
constants that range between κ ) 2.1 × 10-4 au and 8 ×
10-4 au. In other words, the above the barrier eigenstates
decay on almost identical time scales and the aggregate
decay, that is, PR

+(t), are well quantified by a single decay
constant that can be obtained from the weighted average

〈κ+〉 ) ∑
j)m+1

|cj,0|
2 · κj (36b)

The results of the analysis accompanying Figures 8 verify
the conjecture that there are really two dynamic events that
can lead to H atom transfer, tunneling and above the barrier
production, and these events are well separated in time. The
results also explain how a comparison of the time scales of
these two events can be well quantified by treating each as
a single, first-order event. Each above the barrier eigenstate
is well represented by a decaying exponential and all decay
with nearly the same rate constant. Thus, the aggregate decay
of the above the barrier components given by the function
PR
+(t) can be considered to decay with an overall decay

constant given by the weighted average in eq 36b. The below
the barrier eigenstates, the ones responsible for tunneling,
also, individually, decay exponentially although there is a
wide disparity between the decay rates among the below the
barrier eigenstates. More importantly, though, all of the
below the barrier eigenstates decay much slower than even
the least energetic above the barrier eigenstate. This dem-
onstrates that the main conjecture of the present work is
correct: There are two dynamic events that can accompany
H atom transfer; they operate on different time scales, and
it is possible to quantify the rates of each of these two events.

The results also show that one must be very careful when
assigning a time scale, a rate constant, or a portion of a rate
constant resulting from product production through tunneling.
The results show that even though tunneling occurs on a
much different time scale than above the barrier production
of product, there is a wide disparity between the rates of
tunneling between the individual, below the barrier, eigen-
states. We suggest a way to ascribe a rate constant for
tunneling is to consider the tunneling as an overall first-
order process that represents reactant decay with a rate
constant, κ-, given by the weighted average in eq 36a,
although other definitions are possible.

IV. Conclusion

In this work we described a rationale for defining and determin-
ing a “tunneling rate” from experimental observables of an H
atom transfer reaction. The key to this view is the energetic
decomposition of an initial H atom wavepacket into above and
below the barrier components. This wavepacket decomposition

was defined in such a way as to satisfy two criteria. The first
criterion is that these two wavepacket components must evolve
independently of one another in time. The second criterion is
that a time-evolving probability density can be assigned,
separately, to each component. We have shown that both of
these criteria can be satisfied if the two wavepacket components
are formed by superpositions of the eigenstates of the potential
energy under which they evolve.

We stress here that the major conclusion of this work is
not that one can calculate a tunneling rate constant from a
simulation using the wavepacket decomposition as described
above. The major conclusion of this work is that such a
simple, and perhaps obvious way to decompose an initial
reactant wavepacket, leads to a rational way for an experi-
mentalist to interpret observables in a kinetics experiment
on an H atom transfer reaction. We have shown that a
biexponential fit to the overall decay of reactant (the
observable) can be used to extract out a rate constant for
tunneling alone. The simulations merely serve to show that
the less negative of the two exponents in the bi-exponential
fit is the one that describes the tunneling rate, and the more
negative describes over the barrier product production. We
have shown that two, pre-exponential terms in the fit give
information about the initial, nonequilibrium, state of the
system. Again, the simulations merely serve to show that
the pre-exponential term in front of the less negative
exponential can be interpreted as the percent of the initial
wavepacket that has energy less than the barrier and the other
pre-exponential term gives the percent of the initial wave-
packet above the barrier. As the pre-exponential term in front
of the less negative exponential decreases, there is less of
the initial H atom wavepacket below the barrier, and this
can be interpreted as meaning that the system is prepared in
a state farther from equilibrium at t ) 0. Thus, an
experimentalist can gain from a single experimental observ-
able, the overall decay of reactant concentration, kinetic, and
structural information about the H atom transfer reaction.

We have also found that, via simulations, that the energetic
decomposition of the initial reactant wavepacket leads to a
bi-exponential decay of reactant concentration for symmetric
and asymmetric potentials and for differing isotopes of the
H atom.

Another conclusion from this work is that a short-time
exponential fit of reactant concentration decay has very little
to do with the rate of tunneling. The initial decay of reactant
concentration is dominated by the faster dynamic event, over
the barrier product production.

Finally, we discuss how the coupling between the H atom
reaction coordinate, x, and other degrees of freedom can
effect the present results and conclusions. We will also sketch
out a way toward treating such multidimensional systems.

We classify two types of coupling to the H atom reaction
coordinate: (1) direct coupling and (2) bilinear coupling to
vibrational modes. By direct coupling, we mean that the
single-dimensional potential energy, V*(x), would be replaced
by a multidimensional potential of the form, V*(x,yb), where
{yb}are some small set of other degrees of freedom that
directly effect the evolution of the H atom wavepacket. For
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example, if each of the diabatic surfaces VP(x) and VR(x)
were two-dimensional, that is,

VR(x, y))
mωR

2

2
[(x- y)- (xR

0 - yR
0 )]2 (37)

the resulting double-well adiabatic potential would be a non-
trivially coupled two-dimensional potential. One could
envision that such direct coupling between the H atom
coordinate, x, and the y degree of freedom would have a
large effect on both tunneling and above the barrier product
production. In fact, the effect might be large enough to make
the time scales of the two dynamic events become too close
to distinguish. This, by no means, should detract from the
relevance of the present work. In fact, results of the present
work would indicate that if there were not an observable
separation of time scales in the H atom transfer event, then
other effects such as the strong coupling mentioned above
could be present.

The other type of coupling that could be present is bilinear
coupling of the H atom transfer coordinate to a set of
vibrational modes, {ηb}. In this case the double-well potential,
V*(x), would be replaced by a potential energy of the form,

V*(x, ηb))V*(x)+ 1
2∑k)1

ωk
2 · (ηk - ck · x)2 (38)

where ωk and ck are frequencies and coupling of the kth mode
to the H atom coordinate, respectively. The major effect of
such coupling would be to serve as a sink of energy for the
H atom coordinate. If the coupling were strong enough then
it might be possible for the above the barrier eigenstates to
have decay constants approaching those of the below the
barrier eigenstates. Thus, in the strong coupling case, the
time scales of tunneling and above the barrier transfer could
become too close to distinguish. Again, this should not
detract from the relevance of the present work because the
absence of two distinguishable time scales in the transfer
event would indicate such strong coupling was present.

We now describe how one could generalize the present
work to treat the two types of multidimensional systems
described above. If the H atom reaction coordinate, x, was
directly coupled to one or two degrees, of freedom, yb, then
the generalization of the present work would be straightfor-
ward. For example, if the H atom reaction coordinate were
coupled to a single degree of freedom, one would calculate
the eigenenergies, {En}, and eigenfunctions, {ψ}, of the two-
dimensional potential, V*(x,y). There would now be many
more eigenstates above and below the barrier, but as in the
present work, we would not have to propagate each one
separately in time, just propagate two groupings: Ψ- (x,y,t)
the group of below the barrier eigenstates and Ψ+ (x,y,t) the
group of above the barrier eigenstates. The propagation of
each could be accomplished by solving the TDSE on a two-
dimensional spatial grid instead of the single-dimensional
grid used in the single-dimensional case.

If the H atom reaction coordinate, x, was bilinearly coupled
to a set of vibrational modes, {ηb}, the procedure described
above could not be used. The reason is that, presently, there
is an upper limit of 4-5 degrees of freedom for solving the
TDSE on a spatial grid. The simplest and least accurate way

to treat this type of multidimensional system would be to
treat the oscillators classically. In this case, the above the
below and above the barrier eigenstates,Ψ- (x,t) and Ψ+

(x,t), would still be single dimensional, but they would be
propagated via time-dependent potential, V*(x,ηbt;t), that
depended parametrically on the instantaneous positions, {ηt},
of each vibrational mode. The trajectory of each vibrational
mode would be determined via the Verlet algorithm, where
each vibrational mode experienced a force, Fj ) -
∑k)1ωk

2 · (ηk - ck · 〈x〉 t), that depended on the expectation
value, 〈x〉 t, of the H atom position.
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Abstract: We study the conformational preferences and mechanical properties of two isoforms
of the cytokine transforming growth factor-� (-�1 and -�3) with atomistic detail and including the
effects of explicit water. Targeted molecular dynamics simulations are used to perturb
experimental “closed” conformations of both proteins into an “open” conformation, thus far only
observed crystallographically for one of the two isoforms. The artificial restraints imposed by
the protocol are later released, allowing the two covalently bound units of each homodimer to
relax. Homology models of the two proteins are also constructed using the other as a template;
models that are later subjected to the same process of perturbation into the open conformation
and relaxation. On release, both simulations of transforming growth factor-�1 show a tendency
to snap back toward the closed conformation, while those of transforming growth factor-�3 remain
open for the remainder of the simulation, apparently consistent with measurements from a variety
of experimental sources. Duplication of the simulations affords confidence that this observation
reflects a genuine effect of the sequence, as opposed to an artifact of the conformations selected
at the outset. The study provides a previously unseen level of detail, describing the structural
and dynamic behavior of these proteins in solution, and brings us a step closer to understanding
the complex relationship between sequence, structure, and signaling in this family of cytokines.

Introduction

TGF-� Signaling. Transforming growth factor-� (TGF-
�) describes a family of multifunctional cytokines responsible
for regulating a wide range of cellular processes including
growth and differentiation.1,2 Three mammalian isoforms of
TGF-� have been identified (TGF-�1, -�2, and -�3), which
exhibit a high degree of sequence identity (in the range of
70-76%). Despite this similarity, the differences that exist

across the three isoforms are strictly conserved across species,
reflecting each isoform’s distinct biological properties, and
hence their resistance to evolutionary pressures.3,4 The type-I
and type-II signaling receptors for TGF-� (T�R-I and T�R-
II) each contain an extracellular ligand-binding, transmem-
brane, and intracellular Ser/Thr kinase domain.5 Initially,
TGF-� binds to the extracellular domain of T�R-II, forming
a complex that is then able to recruit the second, type-I
receptor.6 Association of these two extracellular domains by
TGF-� prompts transphorylation of the T�R-I kinase domain,
which instigates a series of downstream signaling events.5

Structural Biology. X-ray crystal structures have been
determined for both TGF-�27,8 and -�39 in isolation,
whereas the structural information for TGF-�1 is derived
from NMR spectroscopy.10,11 These studies show all three
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isoforms to associate in the form of a homodimer, with the
two monomers cross-linked by a single disulphide bond
(Cys77-Cys77). The structures are typically described as
resembling a pair of hands clasped together, with a collection
of �-strands representing the fingers, while R-helices H1 and
H3 from each monomer represent the thumbs and wrists,
respectively.

Despite such high similarity between TGF-�1 and -�3 in
terms of their sequences and experimentally determined
conformations, their structures and dynamic behavior in
solution show marked differences. 15N NMR relaxation
studies indicate that the sections of the sequence encompass-
ing R-helices H1 and H3 display much greater mobility in
TGF-�3 than they do in -�1.12 Notably, R-helix H3 is made
up of the least well conserved residues across the TGF-�
isoforms, indicating that this is the region of the protein
where the biological properties are most likely to be
modulated. The structures of TGF-� in isolation appear to
support this concept, in that despite having the same space
group and arrangement within each unit cell, the residues
comprising H1 have notably higher thermal B-factors in
1TGJ (TGF-�3)9 than in the two crystallographic structures
of TGF-�2.7,8 The observed flexibility of H3 is a more
surprising finding, as in the crystalline state this region
represents one of the most rigid parts of the molecule.
However, the restraint of this helix in TGF-�3 is thought to
be an artifact of the crystal packing because a number of
residues are involved in intermolecular interactions in the
crystal lattice.9

Further evidence for the disordering of R-helices H1 and
H3 of TGF-�3 in solution is provided from circular dichroism
experiments.13 This study shows the helical content of TGF-
�3 in solution to be as low as 4%, far lower than would be
expected from the crystal structures of either this isoform
or TGF-�2. The authors conclude by stating that, in contrast
to TGF-�2, -�3 has the ability to adopt two distinct
conformations. Insight into the possible nature of this second
conformation has, at least in part, become available with the
publication of the crystal structure of TGF-�3 in complex
with the extracellular domain of T�R-II.14 In this structure,
the two monomers undergo significant reorientation with
respect to each other, with one subunit effectively rotating
by 101° with respect to the other. As might be expected,
this “open” structure contains far lower helical content than
any of the previously determined “closed” structures of
TGF-� in isolation because the R-helices that comprise the
thumb and wrist are considerably more mobile. This flex-
ibility brings the thermal B-factors more closely into line
with the exaggerated mobilities observed in the NMR
experiments, making the open conformation a more reliable
template for models of TGF-�3 in solution.

A significant advance in understanding the relationship
between structure and function was recently made with the
solution, to a resolution of 3.0 Å, the structure of the
complete TGF-�:T�R-I:T�R-II complex.15 Crucially, this
complex indicates that TGF-� must adopt a closed confor-
mation to recruit the extracellular domains of its type-I and
type-II receptors and thus instigate the downstream signaling
cascade. Prior to this work, it had only been possible to

construct putative models of this complex,6,16 based on
combination of the TGF-�3:T�R-II complex structure14 with
that of the closely related bone morphogenetic protein 2
(BMP-2) in complex with the extracellular domain of the
BMP receptor 1A (BR1A).17

Methodology Selection. The striking differences between
the TGF-� isoforms, particularly in terms of their structural
and dynamic behavior in solution, make this group of
proteins compelling subjects for studies by molecular
dynamics (MD) simulation. We have used targeted molecular
dynamics (TMD)18,19 to promote the transition from the
closed form of TGF-�3 to the open form to produce a model
that is more representative of this protein’s behavior in
solution.

Our reasons for adopting this approach are essentially
2-fold. First, while the actual number of residues that remain
unresolved in the TGF-�3:T�R-II complex structure is fairly
low, those sections of the sequence neighboring these
residues appear frayed when compared to structures of the
ligand alone and feature high crystallographic B-factors.14

This raises a number of questions for anyone wishing to
construct a homology model of the open conformation
directly, in that it is unclear how far back to prune these
termini to construct the missing fragment, and this potentially
requires construction of a loop longer than would be
recommended for most modeling packages. The second
argument centers on the nature of the fragment to be inserted.
The relative orientation of the monomers in the complex
structure prohibits the introduction of a wrist helix as
observed in the closed conformation, while construction of
an extended loop would generate a starting point for a
simulation with little chance of regaining this secondary
structure, regardless of the shape of the conformational
energy landscape.

As a point of comparison, we also performed the same
experiment based on an experimental structure of TGF-�1,
for which there is currently no evidence of such a second,
partially denatured conformation existing. The conforma-
tional preferences and secondary structure composition of
these two isoforms are presented, and their implications for
recognition and signaling are discussed.

Methods

System Preparation. The minimized average NMR
structure of TGF-�110 and X-ray crystal structure of TGF-
�39 were downloaded from the RCSB Protein Data Bank20

(entries 1KLC and 1TGJ). The 224 (2 × 112) residue dimers
were parametrized within the leap module of AMBER 821

using the ff03 force field,22 with disulphide bonds connecting
the cystine residues at positions 7, 15, 44, and 48 with those
at 16, 78, 109, and 111 in each monomer, respectively. The
two remaining cystine residues at position 77 formed the
only covalent bond connecting the two dimers. The histidine
residues at 34, 40, and 68 in TGF-�1 and those at 34 and 58
in TGF-�3 were all designated as ε tautomers. Default
ionization states were used for all other residues.

Homology models of the two proteins were also con-
structed on the basis of the structure of the alternate isoform,
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that is, a model of TGF-�3 was based on the 1KLC structure
and that of TGF-�1 was based on the 1TGJ structure. This
task was performed manually; atoms common to any mutated
residues were preserved and renamed where necessary, while
the remainder of the side-chains had their coordinates deleted.
The leap module was allowed to complete any remaining
atoms according to residue templates, and the systems were
parametrized as above. All four structures were immersed
in rectangular boxes containing over 8000 TIP3P23 water
molecules. Neutralization required the addition of 8 Cl- ions
to each of the TGF-�1 systems and 2 Na+ ions to each of
the TGF-�3 systems. The structures were allowed to relax
via 50 steps of steepest descent, followed by conjugate
gradient minimization until the energy gradient had been
reduced to 0.5 kcal mol-1.

Target structures representing the open conformation were
based upon the X-ray crystal structure of the TGF-�3:T�R-
II complex (PDB entry 1KTZ).14 Because the structure of
TGF-�3 in the complex is incomplete and to minimize any
potential bias (see discussion), monomers from each of the
systems above were superimposed onto the complex struc-
ture, creating a total of four target conformations (Figure
1). Those residues where the tertiary structure remained
unchanged between the open and closed conformations were
then identified (resides 18-44 and 81-108) and designated
as the residues to which the TMD restraints would be applied
(R-carbon atoms only).

Molecular Dynamics Protocol. All simulations were
performed with a 2 fs time step and with the use of SHAKE
to constrain all bonds to hydrogen at equilibrium values.24

Electrostatics beyond a 12 Å cutoff were calculated using
particle mesh Ewald.25 In the initial phase, simulations were
performed at constant temperature and volume (NVT en-
semble), with the temperature regulated using Langevin
dynamics and a collision frequency of 5 collisions ps-1; 100
ps simulations were performed on the solvent and counterions
at 100 K to stabilize interactions with the protein. The water
was heated to 300 K over a further 100 ps, with a harmonic
restraint of 100 kcal mol-1 Å-2 to keep the protein atoms
close to the original structures. These restraints were then
gradually reduced over a further 600 ps, before allowing the
simulations to run unrestrained for a period of 200 ps.

At this point, the protocol was switched to the NPT
ensemble to allow equilibration of the density, and the
temperature was coupled to an external bath using a weak
coupling algorithm.26 Temperature and pressure coupling was
performed at 1 ps intervals, with isotropic position scaling
ensuring the pressure remained constant at 1 bar. The
simulations were allowed to run in this state for a period of
10 ns.

Following this period of unrestrained simulation of the
closed conformations, restraints were applied to the structures
to induce the open state. At each step, the current simulation
structure was superimposed onto the target using the
R-carbon atoms of residues 18-44 and 81-108 from both
monomers, and the rmsd was calculated between the two
sets of atomic coordinates. The total energy penalty for
deviation from the target rmsd was set to 5 kcal mol-1 Å-2

atom-1 (550 kcal mol-1 Å-2). Initially, the target rmsd was

set to the rmsd at 11 ns (typically in the region of 7.5-8 Å)
and then incrementally reduced over a period of 5 ns to a
value of 2 Å. Finally, the structures were allowed to relax,
through gentle reduction of the restraint over a period of 1
ns, before allowing the simulations to run unrestrained for a
further 33 ns. Overall, deposition of coordinates at 100 ps
intervals generated a total of 500 structures for analysis.

Trajectory Analysis and Figure Generation. The rmsd
calculations, secondary structure, and native contact analyses
were all performed using the AMBER module ptraj. Native
contacts were defined as any pairwise atomic contacts (<5
Å) present in the initial structure (closed). In each system,
contacts were identified within two individual subsets of
residues comprising R-helix H3 of one monomer (residues

Figure 1. Construction of a model for the open conformation
of TGF-�. (a) Crystal structure of TGF-�3 in isolation depicting
the closed conformation.9 (b) Crystal structure of TGF-�3 in
complex with the extracellular domain of T�R-II (receptor not
shown).14 (c) Superimposition of monomers from a onto b to
form a template for the open conformation. Residues exhibit-
ing minimal displacement between b and c are rendered in
black and were used as the R-carbon atoms to which the TMD
restraints were applied (resides 18-44 and 81-108). Stick
rendering highlights the side-chains involved in intermonomer
steric overlap.
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57-68 inclusive) and the full opposite monomer. The
presence of such contacts was evaluated for each trajectory
structure and averaged over the periods prior to and following
the TMD restraints being applied (1-11 and 17-50 ns,
respectively).

Computational glycine scanning was performed using the
mm_pbsa perl scripts provided in the AMBER package. This
method involves mutation of each residue to glycine through
the removal all side-chain atoms except C�, which is replaced
by a hydrogen atom. Using this technique, it is possible to
quickly estimate the effect of mutating each residue to
glycine from a single trajectory. The GBSA method was used
to evaluate the electrostatic and nonpolar components of the
free energy of solvation,27 thus the free energy difference
between the wild-type protein, Gwt, and the mutant, Gmut,
was represented by

∆G)Gwt -Gmut

where

G)Eint +EvdW +Eele +Gsol - TS

and

Gsol )GGB + γSASA + �

In this study, we assume that the difference in the overall
entropy between the wild-type protein and the mutant is
negligible, and so no attempt was made to calculate TS. In
the calculation of GGB, a dielectric constant of 1 was used

for the interior of the protein, and 80 was used for the
surrounding solvent; γ represents the surface tension applied
to the solvent accessible surface area (SASA, calculated by
the LCPO method28) and was set to 0.0072 kcal mol-1 Å-2,
with the offset, � set to 0 kcal mol-1. Finally, the free energy
differences were mean-centered on a per-residue basis to
facilitate the identification of energetic hot-spots along the
trajectory. Proline and disulphide bonded cystine residues
were omitted from the analysis.

Molecular graphics images were produced using the UCSF
Chimera29 package from the Computer Graphics Laboratory,
University of California, San Francisco. All plots were
produced using Gnuplot 4.0.

Results
Backbone Structural Analyses. To assess the stability

of the simulations, rmsd calculations were performed on the
R-carbon atoms, comparing the original experimental struc-
tures with those generated during the course of the simulation
(Figure 2). It can be seen that for a little over 10 ns from
the outset, the simulated structures maintain an average
deviation of around 2 Å from the initial conformation in all
four systems. This provides evidence that the unrestrained
simulations of the closed conformation were stable and,
notably, that this was equally the case for the homology
models as for the experimental structures. During this time,
none of the four systems gave any indication of spontane-
ously adopting the open conformation.

Figure 2. rmsd calculations for R-carbon atoms, tracking the conformational transition from the free, closed state to the restrained,
open state and eventual release in the four simulations. Solid lines show comparisons of the structures to the closed, initial
structure, calculated for all residues. The dotted lines show comparisons to the open, target structure, calculated only for those
residues to which the restraint was applied (residues 18-44 and 81-108).
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From 11 ns, the rmsd between the simulated structures
and the original (solid line) rises sharply as the TMD
restraints are applied, and the relative orientation of the
dimers is forced away from the closed state, toward the open
conformation. Conversely, when comparisons are made with
the target structure (dotted line), the rmsd falls as the target
value is reduced, with the measured rmsd eventually reaching
around 2 Å at a time of 16 ns.

It is from this point forward, as the structures are allowed
to relax, that the behavior of the four simulations differs most
significantly. In the two simulations of TGF-�1, the rmsd
from the initial structure begins to fall as the restraints are
released, indicating that the structures are moving back
toward the original, closed conformation. By the end of the
simulations the R-carbon atoms are, on average, around 2 Å
from where they began, and exhibit a greater degree of
similarity to the closed conformation than they do the target.

In contrast to this, the TGF-�3 simulations showed no such
tendency to revert back to the closed state, eventually
finishing with rmsd values of 6.5 and 8.2 Å from their initial
conformations. Both the simulation that started from the
TGF-�3 crystal structure, and that which started from a
homology model based on the TGF-�1 NMR structure, ended
with structures with a greater similarity to the open target
(with an rmsd of approximately 4 Å in both cases) than to
the initial, closed conformation.

The 2D rmsd plots (Figure 3) provide a clear, visual means
of identifying the proteins’ transitions between different
regions of conformational space. The clearly defined white
squares in the bottom left corners of the plots represent the
early part of the simulations, where all four systems occupied
the clearly defined closed state. The large proportion of off-
diagonal white points in this area shows that the structures

Figure 3. 2D rmsd plots comparing each snapshot with every other snapshot within a given simulation. Low rmsd values are
represented as white squares, while high values are black. Simulation time begins at the bottom/left of the plots and ends at the
top/right. Calculations were based on the R-carbon atoms of all residues.
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in the first 11 ns of any given simulation were comparatively
very similar to each other.

As the restraints are applied and the conformations are
encouraged to move toward the open state, the calculated
deviations from the early structures begin to increase sharply,
and consequently, the off-diagonal elements of the matrices
become much darker in all four systems.

Once again, it is from this point on, when the TMD
restraint is released, that the four simulations begin to differ.
In the final phase of the simulations, it can be seen that the
two simulations of TGF-�1 contain much lighter off-diagonal
elements than do the simulations of TGF-�3. These lighter
areas indicate the exploration of conformational space in the
latter stages of the simulations that bears a high similarity
to the initial, closed state. The apparent pattern of a dark
cross against a light background is characteristic of the A
f B f A state behavior. In contrast to this, the TGF-�3
simulations simply continue to explore space surrounding
the twisted, open conformation, without returning to the
experimental structures. It is this simple A f B state
behavior that results in the apparent division of the 2D rmsd
plots into four distinct corners.

Changes to the secondary structure content of the proteins
during the course of the simulations were also calculated.
From the outset, all four simulations had a much greater
proportion of �-strands than R-helices, with a relative
composition of around 40 and 15%, respectively. This
composition is subject to a degree of fluctuation as the
simulations progress, and while there is a general tendency
for the strand content to deteriorate slightly in all simulations,
there is no direct link between this variation and the
application or release of the restraints. Ultimately, there is
little change in the secondary structure of any of the proteins
throughout the whole process, with all 4 systems retaining
about 15% R-helix and 35% �-sheet at 50 ns.

Computational Glycine Scanning. The results from
computational glycine scanning reveal the location of hot-
spots in terms of the free energy difference between the wild-
type and mutant protein (Figure 4). The red points indicate
the location of structures where ∆G is high, that is to say,

where the wild-type protein is considerably less stable than
the glycine mutant. Particularly interesting in this study are
those residues where the energy appears to spike at time
points in the range 11-16 ns, because this is the time when
TGF-�1 was forced to adopt the open conformation. The
area of the plot where this effect appears most prevalent is
in the region of residues 164-180 (Figure 4, right) and, to
a lesser extent, 52-68 (Figure 4, left). These regions of the
protein encompass the wrist helix of each monomer, which
undergoes significant displacement during the course of the
conformational transition. The most noticeable degree of
instability affects residue 58 (residue 170 in monomer B), a
buried tyrosine residue that undergoes mutation to histidine
in TGF-�3.

Native Contact Analysis. A key feature of how the TGF-
�3 structure is able to adapt to the open conformation is
a change in the relative position of R-helix H3 in one of
the two monomers. This translation avoids clashes with
the opposite monomer, while maintaining native contacts
at the dimer interface. To explain and quantify this effect,
we tracked the presence of native atomic contacts within
H3 and its opposite monomer over two periods, pre and
post application of the TMD restraint. The results of this
analysis are presented in Table 1.

As a result of reverting to the closed conformation, the
two simulations of TGF-�1 show little difference in the
prevalence of native atomic contacts before and after
application of the restraints. In all four, such H3 plus
monomer subsets, the loss of native contacts is in the region
of just 1-2%. In contrast to this, the two TGF-�3 simulations
both remained in the open state, and as would be expected,
a significant proportion of native (closed state) contacts are
lost. It appears from the data that in both simulations, the
loss of native contacts is more marked in one monomer than
in the other, that is, one R-helix shifts to accommodate the
opposite monomer, thus retaining a number of closed state
contacts at the dimer interface, while the alternate subset
makes 8-10% less native contacts than it did in the closed
conformation. The same effect is also apparent from the
visual representation of the final structures presented in

Figure 4. Computational glycine scanning applied to the simulation of TGF-�1 (taking the NMR structure,10 1KLC as the initial
conformation). Points on the maps represent the free energy difference, ∆G between the wild-type and glycine mutant for each
snapshot in the simulation, mean-centered for each residue. White points represent stable residues, where this value is less
than 0 kcal mol-1, and red points represent unstable residues, where this value exceeds 7 kcal mol-1.
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Figure 5. In the TGF-�3 simulation that began from 1TGJ,
it is monomer B (light blue cartoon) that shifts to regain
contact with the concave groove in the opposite monomer
(dark gray surface), while in the simulation that started from
the 1KLC structure, it is monomer A (bold green cartoon)
that undergoes this same transformation.

Along with the observed shifts of R-helix H3 in TGF-�3,
we also see concerted changes in the conformation of the
preceding loop, which encompasses residues Arg 52 and Ala

54. In both simulations, a change in the rotamer state of Arg
52 appears to be involved, featuring loss of the crystal-
lographic interaction with Glu 12, and an approximate
doubling in the population of the first solvation sphere
(number of solvent residues <3.4 Å). The loss of the
interaction with Glu 12 has the effect of releasing the tension
in this loop, thus allowing the entire helix to change
conformation. Notably in TGF-�1, where residues 52 and
54 are mutated to tryptophan and leucine, respectively,

Table 1. Number of Native Atomic Contacts As a Percentage of the Number Present in the Initial Structurea

initial structure protein sequence residue subset pre-TMD post-TMD difference

1KLC TGF-�1 H3 (monomer A) + monomer B 74.7% 73.1% -1.6%
1KLC TGF-�1 H3 (monomer B) + monomer A 74.2% 73.2% -1.0%
1TGJ TGF-�3 H3 (monomer A) + monomer B 81.6% 73.3% -8.3%
1TGJ TGF-�3 H3 (monomer B) + monomer A 80.5% 76.8% -3.6%
1KLC TGF-�3 H3 (monomer A) + monomer B 79.1% 76.2% -2.9%
1KLC TGF-�3 H3 (monomer B) + monomer A 79.8% 69.9% -9.9%
1TGJ TGF-�1 H3 (monomer A) + monomer B 81.7% 80.2% -1.6%
1TGJ TGF-�1 H3 (monomer B) + monomer A 82.2% 80.8% -1.4%

a Values are quoted for the periods pre- and post-application and release of the TMD restraints (1-11 and 17-50 ns, respectively). The
difference column quotes the loss of native contacts as a result of the conformational transition.

Figure 5. Cartoon representations of all four final structures following 50 ns of simulation. Monomer A in each system is shown
in bold color, while monomer B is represented in a lighter shade. All 8 monomers are presented in the same frame of reference
by overlaying each structure onto the final coordinates of TGF-�3 monomer B (1TGJ simulation). Monomer A from the same
simulation is represented as a white surface, with those residues which form native contacts with R-helix H3 rendered in dark
gray. Mutated residues in the loop preceding the helix are represented as sticks (residues 52 and 54).
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solvent exposure of Trp 52 remains at pretransition levels,
and the loop undergoes no such conformational change.

Discussion

Simulation Stability. The initial phase of the 1D rmsd
plots allows comparison of the stability of the simulations,
not only between one isoform and the other, but also between
the simulations that began from an experimental structure
of a particular isoform, and the homology model that was
built using the other as a template. One may have expected
that simulation of the solution phase NMR structure of TGF-
�1 would generate structures in closer agreement with the
experimental structure than the simulation of TGF-�3
because of the need for TGF-�3 to overcome any crystal
packing artifacts present in the structure and adapt to the
presence of aqueous solvent. This proved not to be the case.
An encouraging result is that the same level of deviation
from the experimental structures is exhibited in the simula-
tions of the homology models. This indicates that the process
of building the models did not introduce any serious clashes
in the system that could not be rectified through minimization
or the carefully controlled warm-up process, presumably
because of the high level of sequence similarity across the
two isoforms.

Conformational Preferences of TGF-� Isoforms. The
major differences in the two isoforms’ structures and
behavior only became apparent following the release of the
TMD restraints. When the perturbed structures were pre-
sented with an opportunity to relax, both simulations of TGF-
�1 immediately moved away from the induced open con-
formation and began to revert back toward the initial, closed
state. This observation was in stark contrast to the two
simulations of the other isoform studied, TGF-�3, which
remained comparatively comfortably in the open state.

These observations indicate that the process of adopting
the open conformation is energetically far less far favorable
for TGF-�1 than it is for TGF-�3. It is particularly encourag-
ing to see the conformations favored by the homology models
mimicking those of the equivalent isoform, rather than the
isoforms on which the models were based. This allows
confidence that the observations are a direct result of the
protein sequence and not simply an artifact stemming from
the fact that the simulations were initiated from different
conformations. The results are in excellent agreement with
the current experimental evidence surrounding these two
isoforms. After all, it was an X-ray crystal structure of TGF-
�3 in complex with the type II TGF-� receptor that was used
as the initial template for the open conformation of the
homodimer. TGF-�1, on the other hand, has only ever been
observed in the closed state.

It should be noted that selection of a TGF-�3 structure
for the TMD template had the potential to introduce a bias
into the experiment. That is to say, if the systems had been
encouraged to adopt the precise backbone conformation of
TGF-�3, simulations of other isoforms would be considerably
destabilized regardless of the relative orientation of the
monomers. For example, Thr 87 in TGF-�3 is substituted
for proline in TGF-�1, a residue which is far more limited

in terms of main-chain flexibility. This residue may have
encountered serious difficulties in adopting the backbone
conformation of the corresponding threonine in the template.
However, such bias was avoided by superimposing each
individual monomer from the closed structures onto the
complex at the time of target construction, the result being
that the backbone conformation of the target then became
allied to the initial experimental structure. Consequentially,
we can confidently attribute the preferences exhibited by the
two isoforms of TGF-� to the nature of the intramolecular
interactions within the protein.

Dependence of Secondary Structure on Monomer
Orientation. The relative orientation of the monomers in
the open conformation poses a direct conflict with the
location of R-helix H3 as exhibited in the closed crystal
structure (Figure 1). For this reason, the structural stability
of this section is thought to be crucial in determining the
ability of TGF-� isoforms to adopt the open conformation.
In particular, it has been suggested that the four helix
destabilizing residues Thr 57, Thr 60, Gly 63, and Thr 67
on R-helix H3 of TGF-�3 are responsible for disrupting the
formation of this structure in solution.12 Although no
evidence for any loss of helical content was observed in these
simulations, it is precisely this area of the protein where
mutation of the side chains to hydrogen had the most
stabilizing effect upon the induced open conformations of
TGF-�1. The localized instability experienced by H3 in
adopting the open conformation clearly needs to be overcome
by some means. In this study we see how for TGF-�1, this
is achieved by reverting to the closed state, while for �3,
the helix still remains intact, yet is simply shifted sideways
to accommodate the opposite monomer.

The reason TGF-�3 alone is able to tolerate the change in
orientation of R-helix H3 lies (at least in part) in the nature
of the residues that comprise the preceding loop. In the
available experimental structures, position 52 appears semi-
buried, an environment that clearly suits the highly lipophilic
tryptophan residue in TGF-�1. However, during the process
of adopting the open conformation and in an attempt to retain
native contacts at the dimer interface, this loop becomes more
exposed to solvent, and so the environment becomes far
better suited to the more polar arginine residue in TGF-�3.
Indeed, from a lipophilicity perspective, mutation at this
position could not be more dramatic. It is, therefore, not
surprising that there are significant differences in behavior,
not only between one isoform and another, but also between
observations made in solid crystals and those in a polar
solvent.

It is likely that the simulations did not sample an adequate
amount of time for full helical decomposition to be observed,
and that ultimately this is what we would expect to happen.
Nevertheless, the findings are still interesting in their own
right. We have observed that in solution, TGF-�3 has the
ability to adopt a high-energy intermediate conformation in
which the two monomers are rotated but R-helix H3 remains
intact. TGF-�1 on the other hand, lacks the ability to stabilize
such a conformation, and immediately reverts back to the
closed state. This implies that kinetics is likely to play a

Conformational Preferences of TGF-� Isoforms J. Chem. Theory Comput., Vol. 5, No. 3, 2009 489



key role in the transition between open and closed forms of
TGF-� isoforms.

Conclusion

We have successfully performed four TMD simulations on
two TGF-� isoforms, -�1 and -�3. Both the experimental
structures of each isoform and the two homology models
remained stable throughout the course of a 11 ns MD
simulation in explicit solvent. Furthermore, with the aid of
a rmsd weighted restraint, we were able to promote the
transition of both isoforms from the closed conformation to
one we believe to be more representative of TGF-�3’s
structure in solution.

Following the simulations from this point, we observed
distinct, sequence determined preferences for either the open
or the closed form of TGF-�. Transition between the open
and closed form is key to the biological function of TGF-�3
because it must adopt the closed conformation to promote
assembly of the TGF-�:T�R-I:T�R-II signaling complex as
has now been observed.15 Evidence from NMR, CD, and
now TMD simulations indicate that a second, open confor-
mation is preferable in the case of TGF-�3. This is in contrast
to the evidence surrounding TGF-�1, which is believed to
exist entirely in the closed conformation. Here, we have
presented an argument as to why this is the case, and
highlighted key mutations at positions 52-58 inclusive that
we believe are responsible for the change in behavior.

The protocol outlined in this paper has been shown to
distinguish between the conformational preferences of TGF-
�1 and -�3, taking just the experimental structure of one
isoform as a starting point. Of significant interest now is
likely to be the identification of a small subset of point
mutations capable of reversing the behavior of a given
isoform. This is clearly a potential avenue for further
exploration, ideally with the support of experimental evidence
to validate any predictions.
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Abstract: Relativistic spin-orbit density functional theory (DFT) methods have been imple-
mented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the
NWChem electronic-structure program. The Gaussian basis set implementation is based upon
the zeroth-order regular approximation (ZORA) while the planewave implementation uses
spin-orbit pseudopotentials that are directly generated from the atomic Dirac-Kohn-Sham
wave functions or atomic ZORA-Kohn-Sham wave functions. Compared to solving the full Dirac
equation these methods are computationally efficient but robust enough for a realistic description
of relativistic effects such as spin-orbit splitting, molecular orbital hybridization, and core effects.
Both methods have been applied to a variety of small molecules, including I2, IF, HI, Br2, Bi2,
AuH, and Au2, using various exchange-correlation functionals. Our results are in good agreement
with experiment and previously reported calculations.

I. Introduction
It is well established that scalar and spin-orbit relativistic
effects have to be taken into account for accurate electronic
structure calculations of actinides and other heavy elements.
Relativistic effects are best described in electronic-structure
calculations by solving the Dirac equation, whose solutions
are made up of four-component spinor wave functions.
However, four-component methods are not only fraught with
problems such as variational collapse,1 they are also an order
of magnitude more expensive. The extra cost stems from
the need to properly describe the small component wave
function. In principle, the cost of the Dirac equation can be
reduced by transforming it from a regular four-component
eigenvalue equation into a nonregular two-component eigen-
value equation by decoupling the large and small components
of the wave function. However, this nonregular two-
component eigenvalue equation turns out to be difficult to
solve, because it has a nontrivial normalization condition and
the eigenvalue depends nonlinearly upon itself. Over the
years, many approximations have been developed to cir-
cumvent these difficulties such as the Breit-Pauli Hamil-

tonian, direct perturbation theory, Dyall’s modified Dirac
method,2 and the Douglas-Kroll-Hess (DKH) Hamilto-
nian.3-5 Another approximation, the zeroth-order regular
approximation (ZORA) method, has become one of the more
popular of these approximations. The ZORA method was
originally developed by Chang and Durand.6 This method
was rediscovered and further developed by Baerends, van
Lenthe, and co-workers.7 It is a two-component spinor
approach for approximately solving the Dirac equation based
upon regularizing the wave equation by ignoring the energy
dependence of the effective mass of the electron. It has been
shown that the solutions of the ZORA equation are one of
the best two-component approximations to the fully relativ-
istic Dirac solution for hydrogen-like systems. Since this is
a two-component method, calculations can be performed
using only the large component. This approximation has been
shown to perform well for a wide variety of properties and
is among the cheapest of the approximate spinor methods.8,9

The ZORA approximation and other regularized two-
component methods can be used to solve for all the electrons
(core + valence) in the system. However, this is not typically
necessary, since the most significant relativistic effects are
in the core region and can be encapsulated using core
potentials (RECP)10-12 or pseudopotentials.13-15 These types
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of approaches have been shown to give accurate structures,
frequencies, and other properties that depend primarily on
getting the valence electronic structure correct. For properties
that directly involve core orbitals such as XPS and NMR,
all-electron methods may be needed. Relativistic pseudopo-
tentials with spin-orbit effects have been also been devel-
oped in the past. The HGH pseudopotentials are among the
most well-known.13 The Helmstreet, Fong, and Nelson
pseudopotential is another example.16 Theurich and Hill have
also developed a pseudopotential for III-V semiconductors
that is similar to the one implemented here for the norm-
conserving case.17,18 Ultrasoft pseudopotentials incorporating
spin-orbit effects have also been studied, e.g. Corso and
co-workers14,15 and the work of Oda and Hosokawa.19

Chelikowsky and co-workers have recently extended these
approaches to real space grids.20 Solid-state calculations
using these approaches have all yielded favorable results for
both geometries and spin-orbit splittings.

In this paper we present our implementation and applica-
tions of the relativistic two-component Hamiltonian within
the Gaussian basis set and planewave frameworks. Both spin-
free and spin-orbit versions of the Hamiltonian have been
implemented. In the formalism and implementation section,
we present a short overview of the theory and the details of
our implementation in the framework of the NWChem
program package.21 To test our implementation, we have
calculated the equilibrium geometries, harmonic frequencies,
and dissociation energies for a set of small closed-shell
molecules (I2, Br2, HI, IF, Au2, Bi2, AuH). We compare the
results using various exchange-correlation functionals within
the spin-free and spin-orbit approaches. The results are also
compared with experimental data and published calculations.

II. Formalism and Implementation

A. ZORA Formalism. The two-component ZORA equa-
tion is given by

[σ · pK(r)
2me

σ · p+V(r)]ψn(r)) εn
ZORAψn(r) (1)

where

K(r)) (1- V(r)
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2)-1

(2)

After some algebra, eq 1 can be written as
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As one can see above, the spin-orbit operator (term 2) in
eq 3 is already present at this lowest-order of the expansion.
Equation 1 can also be written as

[ p2

2me
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where the nonrelativistic kinetic energy contribution has been
isolated. The advantage of this decomposition is that the

ZORA contribution can be treated as a correction which can
be added to the kinetic-energy matrix elements and also
recovers the correct limits in addition. The spin-free or scalar-
relativistic equation can be obtained by eliminating the
spin-orbit term, resulting in the following equation,

[ p2

2me
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2me
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ZORAψn(r) (5)

It has been established that the one-electron energies of the
ZORA equation, εi

ZORA, can be improved by scaling the
ZORA energy.8,9 This scaling essentially captures the effects
of summing certain higher-order contributions to infinite
order. The scaled one-electron energies εi

scaled are given by
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Within the density functional theory (DFT) framework, the
total scaled ZORA energy Etot

s can be written as
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where the summation runs over the occupied orbitals. The
above equation is identical to the nonrelativistic total energy
except for the kinetic energy contribution which includes
the ZORA correction.

B. Gaussian Basis Implementation. In our Gaussian
basis set implementation, the molecular spinors are expanded
in terms of real basis functions as follows,

φi(r))∑
µ

{ cµi
R (�µ(r)

0 )+ cµi
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�µ(r) )} ) (φi
R(r)

φi
�(r) ) (8)

where �µ are Gaussian basis functions and cµi
R and cµi

� are
expansion coefficients which are, in general, complex. Since
the ZORA corrections only affect the kinetic energy, we only
concentrate on this term. The remaining terms are evaluated
in the conventional manner within the molecular Gaussian
DFT module in NWChem. Within the basis set approxima-
tion and using the decomposition from eq 4, the corrected
kinetic energy elements of the Fock matrix can be written
as

Tµν
tot ) 〈�µ(r)|

p2

2me
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(9)

The spin-free or scalar-relativistic case can be obtained in a
similar way using eq 5. In NWChem, the nonrelativistic part
of the kinetic energy (first term in the above equation) is
evaluated analytically where as the ZORA correction (second
term) is calculated numerically on atom-centered grids.25

Since the ZORA correction depends on the potential, it is
not gauge invariant. There have been a number of attempts
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to address this issue.22-24 In our implementation, we address
this by using the atomic approximation of van Lenthe and
co-workers.26,27 Strictly speaking none of these methods are
truly gauge invariant in the general sense, but they help
minimize the problem. Within the atomic approximation, the
ZORA corrections to the kinetic energy matrix elements are
calculated using the superposition of densities of the atoms
in the system. As a result, only intra-atomic contributions
are involved and no gradient or second derivatives of these
corrections need to be calculated. In addition, the corrections
only have to be calculated once and stored. With this, we
can re-express eq 9 as

Tµν
tot ) 〈�µ(r)|
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2me
|�ν(r)〉 + 〈�µ(r)σ · p|

K̃(r)- 1
2me
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(10)

where K̃(r) ) (1- Ṽ(r)/2mec2)-1 and Ṽ ≈ Vatom
ne + Vatom

H , the
sum of the atomic nuclear-electron, Hartree potentials,
respectively. The atomic densities are calculated for the
neutral atoms at the Hartree-Fock (HF) level, and then, the
ZORA potential corrections are calculated using this density.
Note that we ignore the exchange-correlation contribution
in the evaluation of the ZORA atomic corrections in the same
way as van Lenthe and co-workers.26,27,33 This approxima-
tion works well, as shown by our results. Our implementation
differs from theirs in that they use a resolution of identity
(RI) approach to calculate the ZORA corrections while we
use atom-centered grids.

C. Planewave Implementation. The planewave imple-
mentation uses a two-component spinor expanded in plane-
waves as a basis to describe the eigenfunctions of the system.

ψi(r)) [ψi
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The Hamiltonian operator acts upon the two-component
spinor planewaves in the usual fashion. For a single
eigenfunction,
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and the generalization to many eigenfunctions is of similar
form. Relativistic effects are most dominant in the deep core
region. Since we are mainly interested in the valence
properties, one can encapsulate the core effects into a
pseudopotential. In this work, we construct a two-component
nonlocal pseudopotential. This potential will in general act
on the spin up and spin down components of each eigen-
function in a nontrivial fashion. The first step in generating
a relativistic pseudopotential is to solve for the two-
component spinor all-electron wave functions and the self-
consistent potential for the atom using either two-component
radial Dirac or ZORA equation. The large two-component
solutions are of the form
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where ujl(r) is the radial wave function, Y l
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where Yl
m are the spherical harmonic functions.28 We can

convert the all-electron radial valence wave functions unjl(r)
to radial pseudowave functions, wjl(r), and corresponding
screened ionic pseudopotentials, Vjl

scr,ion by inverting the radial
SchrödingerequationusingtheHamann29orTroullier-Martins
procedure.30 The screened ionic pseudopotential components
are then unscreened (ignoring the small component contribu-
tion to the valence density for Dirac solutions and the
corresponding change in wave function normalization)

Vjl
ion(r))Vjl

scr,ion(r)-Vxc[Fval(r)]-VH[Fval(r)] (17)

where Vxc[Fval(r)] and VH[Fval(r)] are the exchange-correlation
and Hartree functional potentials due to the pseudovalence
density, Fval(r).

The two-component semilocal pseudopotential operators
are of the following form,
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are the expectation values of the spin-orbit operator. Given
that
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ion (r))Vj l(r)+ l

2
Vl

so(r) (21)

Basis Set and Spin-Orbit Methods in NWChem J. Chem. Theory Comput., Vol. 5, No. 3, 2009 493



Vj)l-1⁄2,l
ion (r))Vj l(r)- 1

2
(l+ 1)Vl

so(r) (22)

one can readily solve for the l-averaged and spin-orbit
potentials.
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The radial ionic pseudopotentials and radial pseudowave
functions are shown in Figures 1 and 2, respectively, for the
case of bismuth. For the s and d states, all three methods
are in complete agreement. For the p states, the ZORA and
Dirac results agree almost exactly while the scalar Dirac
clearly shows the effects of the averaging procedure. The

results for j-averaged pseudopotential, Vj l, are shown in Figure
3. Note that all three methods produce identical functions
for this atom. In Figure 4, one sees that for the spin-orbit
term, Vl

so, Dirac and ZORA once again provide identical
results. Analogous to the form given by Hamann,29 the full
pseudopotential matrix element assumes the form,
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where the ion is centered at the origin. The Kleinman-
Bylander expansion of this expression31 is given by
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Figure 1. Ionic spin angular pseudopotentials (L ) s, p, d) for Bismuth using Scalar Dirac, Dirac, and ZORA.

Figure 2. Radial component of the spin angular pseudowave functions (L ) s, p) for bismuth using Scalar Dirac, Dirac, and
ZORA.
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where φ1 and φ2 are Pauli spinor planewave functions of
the form

φ1(r)) jl(kr)Y l
j,mj(r̂) (27)

and the local potential matrix element is taken to be that of
the nonrelativistic form, (Vlocal(r) ) Vj l)llocal

(r)),
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The scalar radial term, Qjl
ion(r), is defined as
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the term Cjl is
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∞
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and the nonlocal pseudopotential term, Vjl(r) ) Vjl
ion(r) -

Vlocal(r). It should be pointed out that, in this prescription,
neither of the two nonlocal potentials corresponding to the
orbital angular momentum eigenstate llocal vanish, which is
the case for the nonrelativistic prescription of standard
pseudopotentials. In fact, each has parts of the spin-orbit
interaction. Also, one must note that the local potential must
be chosen carefully to ensure that Cjl does not diverge. For
example, if integral containing Vjl that appears in the
denominator is small this coefficient will be very large. Any
error in the projector will be unreasonably amplified. The
approach taken here is to set Cjl to zero when this occurs.
Another noteworthy fact is that the nonlocal potential is an
outer product of two spinor wave functions effectively
making it a 2 × 2 complex matrix.

Figure 3. l-Averaged radial pseudopotentials (L ) s, p, d) for bismuth using Scalar Dirac, Dirac, and ZORA.

Figure 4. Radial spin-orbit component of pseudopotential (L ) p) for bismuth using Scalar Dirac, Dirac, and ZORA.
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These quantities for the three methods are shown in Figure
6. As was the case, for the ionic pseudopotentials, the p and
d states show very close to exact agreement between ZORA
and Dirac, while the scalar Dirac method is clearly
an averaged outcome for the two values of j for each l.
The crucial feature of this new pseudopotential is that the
projectors are two-component spinors. Thus, when the
Kleinman-Bylander expansion is done, we are expanding
in terms of the eigenvalues of the spin angular functions
instead of scalar functions which are eigenfunctions of the
angular momentum operator. Since our projectors are
diagonal with respect to the spin-orbit term σ ·L, the
implementation of this term is direct and compiler can
optimize the code more efficiently. Note that the spin-orbit
interaction is now coupled in the nonlocal interaction in a
non-perturbative fashion and that the spin-components of an
arbitrary wave function are mixed by this interaction term.
This approach allows the inclusion of spin-orbit effects in
an accurate manner with only a small increase in computa-
tional costs. Since a spinor wave function with two compo-
nents is needed for each eigenstate, the number of plane-
waves is effectively doubled (compared to a gamma point
code, the cost is four times more components). Also the
nonlocal potential now requires four times the amount of
memory of a conventional code. While this increase is
certainly not small, it is not prohibitive. The extra compu-
tational cost can be offset on parallel machines, since the
nonlocal pseudopotential is easy to parallelize. The accuracy
comes from the fact that the large majority of the spin-orbit
effects comes from the core electrons. Assuming norm-
conservation conditions are imposed, the electric field near
each atom at or beyond the core cutoffs is nearly identical
to one would find for an all-electron calculation since the
core charge of the ion is preserved by the pseudopotential.

III. Applications

The Gaussian basis set calculations were performed with the
development version of the NWDFT module of NWChem.21

Molecules involving I, H, F, and Br were calculated using
the 6-311G** basis set, and for those involving Au and Bi,
large uncontracted basis sets32 Au(26s20p19d16f) and
Bi(26s23p19d14f) were used. Numerical integration was

performed using the extremely fine integration grids available
within NWChem.25 All calculations were performed with
spherical basis sets. In this paper, we have performed
calculations with three different exchange-correlation func-
tionals (LDA, PBE96, B3LYP). In each of the cases, the
spin-orbit effects are discerned by comparing the spin-free
case to that of the two-component spinor approach.

The plane wave calculations were done with the develop-
ment version of the NWPW module of NWChem.21 A cubic
box of 20a0 was chosen with a cutoff energy of 101 Rydbergs
for the wave function and 202 Rydbergs for the density for
the PBE96 exchange-correlation functional calculations.
Tests using this functional were also done using a smaller
density grid (equal to that of the wave function) and showed
insignificant differences for the reported properties of the
molecules in the test suite confirming that the cutoff is
adequate. However, changes in the vibrational frequencies
of the gold dimer and gold hydride were noted. For
comparison to the more accurate GGA(PBE96) results,
calculations using the LDA or SVWN functional were
completed using a cutoff of 101 Rydbergs for both the wave
function and the density. The pseudopotential generation was
done with the SVWN exchange-correlation functional. Since
each test case is a closed shell molecular dimer, the initial
wave function is taken to have multiplicity of one. The core
radii, electronic configuration, maximum angular momentum,
local pseudopotential used for the Kleinman-Bylander ex-
pansion, and the exact type of pseudopotential used for each
molecule are given in Tables 4 and 5. Except for the H and
F atoms, the core radii were generated based upon the default
criteria of Hamann or Troullier-Martin for the corresponding
pseudopotential.29,30 This very stringent criteria was used
in order to make the pseudopotentials as transferable as
possible. It should be noted that these criteria will result in
slightly different core radii for scalar relativistic and rela-
tivistic pseudopotentials. By default, the local pseudopotential
used in the Kleinman-Bylander expansion was taken to be
the pseudopotential for the maximum angular momentum.
However, when ghost states were found a different angular
momentum was chosen. The evidence for such a ghost state
was taken to be the presence of a molecular bound state
energy with a very low energy compared to the energy of
the lone atom. For example, in Br the ghost state was 3 times
lower in energy than the corresponding atomic orbital energy.
In general, Hamann type pseudopotentials were used as a
default and for all the relativistic two component pseudo-
potentials. Troullier-Martins type pseudopotentials were
used only for cases where we had difficulty making the
Hamann potentials work. However in most cases, there was
no discernible difference in the quality between Hamann and
Troullier-Martins potentials. In the radial Dirac or radial
ZORA solver, the occupancies for the relativistic orbitals
were determined by multiplying the total occupancy of the
nonrelativistic orbital by the fraction of states for the
relativistic orbital. For example, for a 5p5 state there are 6
states, the 5p1/2 state has 2 states while the 5p3/2 would have
4. Thus, the number of electrons in the 5p1/2 is 5 × 2/6 )
5/3, and the number of electrons in the 5p3/2 is 5 × 4/6 )
10/3. The yields a spherical potential for the relativistic case.

Figure 5. Radial local potential (L ) p) for bismuth using
Scalar Dirac, Dirac, and ZORA.
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The Dirac solver was used for all calculations except for
those noted below. To the best of the authors knowledge,
this is first test of a norm conserving spin-orbit pseudopo-
tential for most of these molecular dimers (except for a very
recent paper20 which calculated Au2 and AuH). Hence for
most of these molecules, the results can only be compared
with the HGH spin-orbit pseudopotential 13and Gaussian
basis set ZORA DFT results. For Bi2, I2, and Au2, tests were
conducted at a lower cutoff (32 × 32 × 32 Fourier grid) to
determine the optimal values for the local potential, maxi-
mum angular momentum, and pseudopotential type.

The results for the bond lengths are presented in Table 1
while vibrational frequencies are presented in Table 2. The
dissociation energies are given in Table 3. For most of these
molecules, the spin-orbit effect is small. This is expected since
these molecules are closed shell. One will note that in some
cases, the spin-orbit does not seem to improve things, though
the correction is not significant and this disagreement might
easily result from other factors. In general, one might expect
that the spin-orbit interaction will drive the bond length to be
slightly longer. The rationale for this type of effect is that the
spin-orbit interaction splits the 2(2l + 1) degenerate atomic
orbitals for a given l into two separate groups having total

Figure 6. Radial components of the nonlocal spin-angular projectors (L ) s, p, d) for bismuth using Scalar Dirac, Dirac, and
ZORA.

Table 1. Bond Lengths (Å)

I2 IF HI Br2 Bi2 AuH Au2

experiment34 2.67 1.91 1.61 2.28 2.66 1.52 2.42
PW-PBE96-HGH-SO 2.67 1.97 1.61 2.28 2.57 1.54 2.53
PW-LDA-SR 2.67 1.87 1.63 2.29 2.62 1.60 2.47
PW-PBE96-SR 2.68 1.99 1.60 2.28 2.63 1.52 2.50
PW-PBE96-SO 2.61 1.90 1.62 2.27 2.57 1.59 2.61
GB-PBE96-ZORA-SR 2.71 1.94 1.63 2.32 2.65 1.55 2.54
GB-PBE96-ZORA-SO 2.73 1.95 1.63 2.33 2.68 1.55 2.52
GB-LDA-ZORA-SR 2.68 1.92 1.62 2.29 2.61 1.54 2.46
GB-LDA-ZORA-SO 2.70 1.92 1.63 2.29 2.64 1.54 2.45
GB-B3LYP-ZORA-SR 2.73 1.93 1.62 2.33 2.64 1.55 2.54
GB-B3LYP-ZORA-SO 2.75 1.93 1.62 2.33 2.69 1.55 2.53
GAMESS-UK-PBE96-GGA-SR33 2.70 1.91 1.61 2.61 1.53 2.46
GAMESS-UK-PBE96-GGA-SO33 2.72 1.92 1.62 2.64 1.53 2.45

Table 2. Vibrational Frequencies (cm-1)

I2 IF HI Br2 Bi2 AuH Au2

experiment34 215 610 2309 325 173 2305 191
PW-PBE96-HGH-SO 216 634 2263 327 199 2212 173
PW-LDA-SR 224 616 2249 331 187 3531 549
PW-PBE96-SR 217 610 2270 322 206 2250 185
PW-PBE96-SO 225 620 2315 323 201 2006 167
GB-PBE96-ZORA-SR 209 607 2247 308 192 2204 173
GB-PBE96-ZORA-SO 196 603 2228 305 177 2206 175
GB-LDA-ZORA-SR 221 639 2261 325 202 2267 193
GB-LDA-ZORA-SO 207 635 2239 321 168 2295 195
GB-B3LYP-ZORA-SR 209 626 2287 310 198 2186 169
GB-B3LYP-ZORA-SO 198 623 2268 307 166 2241 173

Table 3. Dissociation Energies (eV)

I2 IF HI Br2 Bi2 AuH Au2

experiment34 1.56 2.92 3.20 2.00 2.03 3.36 2.31
PW-LDA-SR 2.69 3.97 3.90 3.06 3.38 3.99 3.44
PW-PBE96-SR 2.13 2.95 3.40 2.59 4.20 3.28 2.40
PW-PBE96-SO 1.30 2.80 3.05 2.03 4.05 2.72 1.87
GB-PBE96-ZORA-SR 2.38 3.50 3.03 2.43 2.62 3.53 2.55
GB-PBE96-ZORA-SO 1.87 3.29 2.87 2.22 2.08 3.52 2.52
GB-LDA-ZORA-SR 2.92 4.30 3.76 3.10 3.51 3.64 3.06
GB-LDA-ZORA-SO 2.26 4.01 3.42 2.82 2.85 3.62 3.02
GB-B3LYP-ZORA-SR 2.52 3.05 3.19 2.11 2.45 3.48 3.48
GB-B3LYP-ZORA-SO 1.96 2.81 2.96 1.86 1.83 3.48 3.48
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angular momenta of j ) l + 1/2 and j ) l - 1/2. The j ) l - 1/2
component is 2l degenerate and is slightly pushed in toward
the nucleus with respect to the nonrelativistic or scalar relativistic
reference, while the j ) l + 1/2 component is 2l + 2 degenerate
and pushed away from the nucleus. This effect can be seen in
Figure 2 for the Bi pseudowave functions. The net result is that
one may expect the bonding region to move away from the
nuclei and create a slightly longer bond when spin-orbit effects
are included. This type of effect is seen for the I2 and Bi2 dimers
in the Gaussian ZORA basis set calculations; however, this
effect is not readily observed for the other dimers. This type of
effect was not observed in the planewave basis set calculations.
The most likely reason for this is that the differences associated
with the subtle differences in parameters for generating the
scalar relativistic and spin-orbit relativistic pseudopotentials
are large enough to wash out this effect. Similar results have
been observed in a previous plane-wave study by Oda and co-
workers19 using ultrasoft fully relativistic pseudopotentials for
solid-state calculations. For Pb and Pt an increase in the
equilibrium lattice constant is observed while for Au a decrease
is noted. There are many competing effects that do not directly
derive from the spin-orbit potential which might have influ-
ences on the bond lengths such as the image interaction or box
effects. For most cases, there is good agreement between
experiment and theory. The Gaussian ZORA appears to yield
much smaller spin-orbit effects than the relativistic Dirac
planewave pseudopotential. Comparing these results to that of
the all-electron DFT ZORA implementation in GAMESS-UK,33

one sees very close agreement. The differences are less than
five percent in all cases. Also one sees close agreement with
the results for the planewave method with HGH pseudopoten-
tials (note these results were generated by NWChem and, while
very close to those published originally in the HGH paper,13

are not identical).
For dissociation energies, the same trend is observed as

with the bond lengths. As one would expect, LDA tends to

give better geometries while GGA yields better dissociation
energies. The inclusion of spin-orbit seems to improve the
dissociation energy somewhat. Once again the Gaussian
ZORA agree well with the results from Faas et al.33 As for
the harmonic frequencies, most of these follow a trend similar
to what is observed in other quantities. In agreement with
physical intuition, a shorter bond length leads to a higher
harmonic frequency and vice versa. One notable exception
was found in the planewave calculations for the dimers IF,
AuH, and Au2 where initial tests yielded very large frequen-
cies even when the dissociation energies and bond lengths
were nearly equal the experimental values. The problem was
found to be that F and Au both have very small compact
pseudowave functions using the default parameters of
Hamann or Troullier-Martin. It was found that the frequen-
cies for Au2 and AuH could be made to approach the
experimental values when larger cutoff radii were used to
define the Au pseudopotential. Unfortunately, increasing the
cutoff radii resulted in large errors in the dissociation energy.
The lack of transferability of the Au pseudopotential is likely
the result of the core states of Au being highly polarizable,
and a very large cutoff is needed to resolve the compact core
functions. To address this effect, the 5s, 5p, and 5d orbitals
were included in the valence space. Even though these
pseudopotentials produced better results than without the 5s
and 5p state. Table 1 still shows a need for improvement.
For Gaussian basis sets, a very diffuse set is needed to
properly represent the metallic bonding aspects of this
molecule. Nevertheless, the results are reasonable. Past
calculations such a that of Naveh et al. found bond lengths
of 2.55 for this dimer.20 Scalar ZORA calculation by van
Lenthe et al.8 found 2.458 and 2.517 Å for LDA and GGA,
respectively. The Gaussian ZORA DFT results of 2.45 and
2.52 Å are very close to the previously reported results. The
planewave result of 2.50 Å is nearly the same as the scalar
ZORA; however, the inclusion of spin-orbit effects actually
makes the agreement with the experimental bond length, 2.42
Å, slightly worse. Note that an experimental value of 2.47
Å has also been reported. For AuH, the calculated values of
1.539 for scalar ZORA, 1.55 for the real-space method, 1.55
for the present Gaussian ZORA DFT, and 1.52 for the present
planewave method all compare somewhat well with the
experimental value of 1.52 Å. Once again for the gold
pseudopotential, the planewave results are slightly elongated
with the addition of the spin-orbit coupling for bond lengths
and the addition of spin-orbit in the planewave case actually
leads to slightly less accurate predictions. This addition has
no visible effect in the Gaussian ZORA DFT approach.

IV. Conclusions

Relativistic two-component methods have been implemented
in the NWChem program within the molecular Gaussian DFT
and pseudopotential planewave DFT modules. These meth-
ods have been shown to produce reliable results for the small
closed-shell molecules we have considered in this paper.
These two methods are also complementary. The all-electron
Gaussian ZORA DFT method allows one to calculate
relativistic properties of molecules with albeit expensive costs
compared with RECP DFT while the planewave method

Table 4. Planewave Pseudopotentials

atom local Lmax config type

Br d d 4s24p5 TM
Bi d d 6s26p26d1 Ham
I d d 5s25p5 Ham
Au s d 5s25p65d10 TM
F d d 2s22p5 Ham
H p p 1s1 Ham
Br p d 4s24p5 Ham
Bi p d 6s26p3 TM
I p d 5s25p5 Ham
Au s d 5s25p65d10 Ham

Table 5. Planewave Radial Cutoffs for Pseudopotentials
(a0)

Br Bi I H Au F

s 1.405 1.114 1.0130 0.800 0.844 0.700
p 1.657 1.466 1.2062 0.800 0.951 0.700
d 1.657 1.958 1.4733 1.215 0.700
s1/2 0.843 1.866 1.013 0.506
p1/2 0.979 2.211 1.171 0.535
p3/2 0.999 2.542 1.224 0.585
d3/2 1.706 2.542 1.466 0.714
d5/2 1.715 2.542 1.481 0.740
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allows a more economical approach. Also the planewave
method will allow calculations of surfaces, solids, and
solutions in a completely ab initio manner, while the
Gaussian basis set will allow the calculation of properties
associated with core electrons. These two implementations
will be available within the quantum chemistry program
NWChem. The planewave method builds on previous
implementations13-19 of similar pseudopotentials and opens
the possibility of performing spin-orbit calculations on
thousands of processors. Likewise, the Gaussian basis set
all-electron ZORA implementation provides similar capabili-
ties. Future work includes the application of these methods
to open shell heavy atom compounds, in particular, actinide
and lanthanide compounds. While these methods are certainly
cheap compared with more traditional approaches, they
provide chemists with the ability to include a realistic
description of relativistic effects such as spin-orbit splitting,
molecular orbital hybridization, and core effects.
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Abstract: Auxiliary basis sets for use in density fitting second-order Møller-Plesset perturbation
theory and other correlated ab initio methods have been developed for the 4d transition metal
elements Y-Tc and Rh-Pd (sets for Ru, Ag, and Cd are already available), to be used in
conjunction with the correlation consistent basis sets with pseudopotentials cc-pVnZ-PP and
aug-cc-pVnZ-PP. Correlation energy calculations for a test set of small- to medium-sized transition
metal complexes encompassing a variety of oxidation states show that the error in using these
auxiliary basis sets is around 3-4 orders of magnitude smaller than the error due to orbital
basis set size. The effect of truncating the auxiliary basis sets to remove higher angular
momentum functions is also considered.

1. Introduction

With the advent of correlation consistent (cc) basis sets for
the first and second row transition metals,1-3 the application
of correlated ab initio methods such as second-order
Møller-Plesset perturbation (MP2) and coupled-cluster (CC)
theories to transition metal complexes has become more
attractive as a systematically improvable increase in basis
set toward the basis set limit is now possible.4-9 Even with
the use of pseudopotentials to replace the chemically inert
core electrons, the large size of many typical transition metal
complexes means that conventional post-Hartree-Fock (HF)
calculations rapidly become prohibitively expensive. The
density fitting (DF) approximation10 of electron repulsion
integrals as applied to some post-HF methods expands orbital
product densities in an optimized auxiliary density fitting
basis set, and in the case of MP2 typically reduces calculation
times by around an order of magnitude with a negligible
loss of accuracy.

Also known as the resolution-of-the-identity (RI) ap-
proximation in some circles, density fitting has been imple-
mented for a wide range of electronic structure theories, with
correlated ab initio examples including MP2,11,12 coupled-
cluster,13 and approximate coupled-cluster singles-and-

doubles model CC2.14 Lately, progress has also been made
in combining density fitting with local electron correlation
techniques in order to produce further computational
savings.15-17 Unlike density-fitted HF or density functional
theory, the same optimized auxiliary fitting bases can be
successfully employed across the range of these post-HF
methods, with the exception that density fitted local CC
methods can benefit from selecting a larger auxiliary basis
from the same series. An alternative to the use of optimized
auxiliary basis sets is to automatically generate the auxiliary
basis18 in the same manner as that which can be employed
for Cholesky decomposition of electron integrals.19 Although
these sets do not hold any bias toward a particular quantum
chemical method they are generally larger, and therefore
incur a higher computational cost, than sets specifically
optimized for post-HF calculations.

Dunning originally optimized cc basis sets for first-row
atoms.20 Further work also provided cc sets for p block
elements,21-24 along with options for the description of
anions and noncovalent interactions,25,26 among many others.
In their simplest form (valence only correlated, without being
augmented with additional diffuse functions) this family of
basis sets is usually denoted as cc-pVnZ, where the cardinal
number, n, refers to the � level of the basis set (D, T, Q, 5,
and so on). This increase in cardinal number corresponds to
a systematic approach to the complete basis set (CBS) limit,
and when combined with the hierarchy of post-HF ab initio
methods this leads to an obvious progression toward more
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accurate calculations. DF auxiliary basis sets for correlated
ab initio methods (herein referred to as MP2 fitting basis
sets) have been optimized specifically to be used with cc
orbital basis sets for the majority of lighter elements,27-29

enabling systematic improvement of calculations at a sig-
nificantly reduced computational cost.

In the present work MP2 fitting basis sets are optimized
for the 4d transition metal elements Y-Tc and Rh-Pd
for use with the recently proposed cc-pVnZ-PP and
aug-cc-pVnZ-PP,2 where PP signifies the use of a pseudo-
potential, orbital basis sets. Similar MP2 fitting sets for
the remaining 4d elements Ru30 and Ag-Cd31 are
available elsewhere.

2. Basis Set Construction and Optimization

The cc-pVnZ-PP and aug-cc-pVnZ-PP (where n ) D, T, Q,
and 5) orbital basis sets and pseudopotentials (replacing 28
of the core electrons) used for constructing and optimizing
the MP2 fitting basis sets were obtained from the William
R. Wiley Environmental Molecular Sciences Laboratory
Basis Set Exchange.32 All optimizations were performed with
the analytic gradients for the optimization of auxiliary basis
sets28 implemented in the RICC2 module14,33 of the TUR-
BOMOLE package.34,35 Two guidelines previously employed
for other cc MP2 fitting basis sets were adopted in the
construction of the current sets, namely, that the number of
functions in the auxiliary set should be less than four times
the number of functions in the orbital basis and that the
number of auxiliary functions in each specific basis set should
be the same for all atoms considered.27 Because of the variety
of oxidation states any given transition metal element may
be found in, the accuracy of MP2 fitting basis sets was
verified by comparing the mean error, standard deviation,
maximum error, and mean unsigned error introduced by the
DF approximation at the MP2 level with the same statistics
for the error in orbital basis set incompleteness for conven-
tional MP2 over a test set of representative transition metal
complexes. The later error was assessed as the difference in
energy between a given orbital basis set and an estimate of
the CBS limit obtained via a basis set extrapolation of
quadruple- and quintuple-� energies utilizing the formula En

) ECBS + An- 3 of Helgaker and co-workers,36,37 where n is
the cardinal number of the basis set. For the density fitting
error to be regarded as negligible compared to the orbital
basis set incompleteness all of the statistical measures should
be at least 2 orders of magnitude smaller than the orbital
basis error outlined above.27,29

To ensure that the MP2 fitting basis sets produced
satisfactory results for transition metal complexes with a
range of different oxidation states, a procedure similar to
that outlined previously28,29 was followed. The elements Y,
Zr, and Tc, which are generally found in a single oxidation
state, had exponents divided into two categories, and initially
all exponents were optimized for a cation of the element
corresponding to the oxidation state, before exponents that
contribute to the outermost atomic orbitals (AOs) and with
high angular momentum were reoptimized for the neutral
atom with all other exponents fixed. This layered optimiza-
tion is modified for the atoms Nb, Mo, Rh, and Pd, where

the initial optimization is for the cation producing the highest
oxidation state generally found in chemical compounds and
an additional intermediate set of exponents are optimized
for the cation typically corresponding to the most commonly
found oxidation state of the element. For a more complete
explanation of the procedure, readers are referred to ref 29.
For the aug-cc-pVnZ-PP sets, the corresponding cc-pVnZ-
PP auxiliary basis is held fixed while an additional diffuse
exponent for each angular momentum quantum number is
optimized for the anion of the element. For the testing of
the MP2 fitting basis sets all non-4d elements are treated
with the cc-pVnZ or aug-cc-pVnZ AO orbital basis sets
consistent with the cardinal number used for the transition
metal element, with the corresponding auxiliary basis sets
of Weigend et al.27 employed in the density fitting.

3. Results and Discussion

The total number of Gaussian-type orbitals (GTOs) included
in the MP2 fitting basis sets, along with the number of GTOs
in the corresponding generally contracted orbital basis, are
presented in Table 1. It should be noted that the number of
functions is the same as for the MP2 fitting basis sets
available for Ru, Ag, and Cd. It can be seen from the ratio
of the orbital and auxiliary functions that at no point does
the number of auxiliary functions approach the upper
guideline limit of four times the number of orbital functions,
and that as the number of functions in the orbital basis
increases the relative number of functions required in the
auxiliary basis is reduced. Just as with previous cc-type MP2
fitting basis sets,27-29 to ensure sufficient accuracy in the
DF it was necessary to include auxiliary functions with an
angular momentum quantum number of locc + lbas, where
locc and lbas are the highest occupied angular momentum for
the atom and largest angular momentum included in the
orbital basis set, respectively.

While the auxiliary basis sets presented in this paper have
been optimized for atoms and ions, verification of their
accuracy for use in molecular applications requires a test
set of representative transition metal complexes containing
the relevant 4d elements. This test set has been extracted
from the more comprehensive (in terms of elements covered)
set presented previously38 and consists of YF, YF3, YO, ZrF,
ZrF3, ZrO, ZrO2, NbF3, NbO, NbO2, NbO2F, Mo(CO)6,
MoF3, MoH, MoO2, MoO3, Tc2O7, TcO, TcO3F, RhF, RhF4,
RhF6, RhO, Pd(CO)4, PdF, and PdO2. The errors in MP2
correlation energy due to orbital basis set incompleteness

Table 1. Ratio of the Number of GTOs in the MP2 Fitting
Basis Sets Compared to the Number of GTOs in the
Generally Contracted Orbital Basis

orbital basis MP2 fitting basis
ratio of

functions

cc-pVDZ-PP [4s4p3d1f] (8s8p6d6f4g2h) 2.8
cc-pVTZ-PP [5s5p4d2f1g] (10s10p9d7f6g3h2i) 2.8
cc-pVQZ-PP [6s6p5d3f2g1h] (11s11p10d8f7g5h3i2k) 2.5
cc-pV5Z-PP [7s7p6d4f3g2h1i] (12s12p11d10f9g6h5i3k2l) 2.3
aug-cc-pVDZ-PP [5s5p4d2f] (9s9p7d7f5g3h) 2.5
aug-cc-pVTZ-PP [6s6p5d3f2g] (11s11p10d8f7g4h3i) 2.5
aug-cc-pVQZ-PP [7s7p6d4f3g2h] (12s12p11d9f8g6h4i3k) 2.2
aug-cc-pV5Z-PP [8s8p7d5f4g3h2i] (13s13p12d11f10g7h6i4k3l) 2.1
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for the double-, triple-, quadruple-, and quintuple-� basis sets
are shown in Table 2, where the relative percentage error
for each complex has been calculated as ∆i

AO ) (ECBS -
EVnZ)/ECBS × 100%, and statistical data over the full test set
is presented as the mean (∆jAO), standard deviation (∆std

AO),
and the largest error within the test set (∆max

AO ). Also shown
is the absolute error between the MP2 correlation energy
for a given basis set and the estimate of the CBS limit
(ABS∆jAO). It should be noted that conventional MP2 calcula-
tions on Pd(CO)4 with the aug-cc-pV5Z-PP basis were
beyond the computational resources available, because of
the literature geometry possessing no symmetry, and hence
the statistics shown in Table 2 for the augmented basis sets
do not include results for this system. An extensive test of
the errors due to the use of the orbital basis sets is not a
goal of the current investigation and tests of atomic and
molecular applications are available elsewhere;8 it is suf-
ficient that the errors displayed in Table 2 are consistent with
the magnitude of errors observed for molecules containing
second row28 and 3d29 atoms.

The absolute error in the correlation energy due to the
density fitting approximation has been assessed for all eight
basis sets over the test set of transition metal complexes.
These errors are presented, as a mean (ABS∆jDF), standard
deviation (ABS∆std

DF), and maximum error (ABS∆max
DF ) over the

test set, in Table 3. It can be seen that these absolute errors
in the correlation energy are small, especially compared to
the absolute error in correlation energy due to the orbital
basis (cc-pVDZ-PP has an estimated mean error of 308.6870
kcal mol-1 in the orbital basis yet the mean error from density
fitting is 0.0662 kcal mol-1). On increasing the orbital basis

from cc-pVDZ-PP to cc-pVTZ-PP the mean change in energy
drops by 170.6235 kcal mol-1, but as this is more than 3
orders of magnitude greater than the absolute error in
correlation energy due to density fitting it seems clear that
the error, in absolute terms, introduced by density fitting is
small and should have a negligible effect on correlation
energy based basis set extrapolations. Readers should be
aware that these errors, and all others regarding the MP2
fitting basis sets reported in the current investigation, include
contributions from the non-4d atoms (and their respective
orbital and MP2 fitting basis sets) that are part of the
complexes in the test set and are thus not entirely due to
the new sets presented. However, as real world applications
are likely to include such atoms in addition to 4d transition
metals, they are more indicative of the magnitude of errors
that may occur in further applications.

Further analysis of the errors introduced by density fitting
is carried out by inspecting the percentage error relative to
the orbital basis set, which can be expressed in terms of the
correlation energy as ∆i

DF ) (Ecorr - EDF - corr)/Ecorr × 100%,
where Ecorr and EDF - corr are the conventional and density
fitting MP2 correlation energies, respectively. These errors
can be found in Table 4, summarized as the mean of the
error over the test set (∆jDF), the standard deviation (∆std

DF),
the mean unsigned error (|∆DF|), and the largest error within
the test set (∆max

DF ). As there is no guarantee that the density
fitting approximation will consistently under- or overestimate
the conventional correlation energy, the mean error of Table
2 should be compared with the mean unsigned error of Table
4 to properly assess the quality of the fitting.

Table 4 indicates that the relative error introduced by the
density fitting approximation with all eight MP2 fitting basis
sets is small enough to be insignificant in terms of the overall
correlation energy. In all cases the statistical measures of
the errors are between 3 and 4 orders of magnitude smaller
than the error due to orbital basis set incompleteness
highlighted in Table 2. Because of the rounding of values
in Table 4, it is not immediately obvious that aug-cc-pV5Z-
PP produces a more accurate fitting than aug-cc-pVQZ-PP,
but it is evident at a higher precision, for example, that the
aug-cc-pVQZ-PP ∆max

DF is 0.000347 while that for aug-cc-
pV5Z-PP is 0.000286. This improvement can be seen
graphically in Figure 1, which plots the normalized Gaussian
distributions of the relative errors due to density fitting for
all eight auxiliary basis sets.

Both Figure 1 and Table 4 show that as the cardinal
number of the basis set is increased DF-MP2 produces

Table 2. Relative Percentage and Absolute (kcal mol-1)
Errors in the MP2 Correlation Energy due to Orbital Basis
Set Size, Assessed by Comparing the cc Basis Set with a
Complete Basis Set Estimate, for a Test Set of Transition
Metal Complexesa

∆j AO ∆std
AO ∆max

AO ABS∆j AO

cc-pVDZ-PP 36.64 5.99 46.87 308.69
cc-pVTZ-PP 16.84 3.67 24.93 138.06
cc-pVQZ-PP 8.24 1.86 12.67 67.54
cc-pV5Z-PP 4.22 0.95 6.49 34.58
aug-cc-pVDZ-PP 33.07 5.64 42.70 267.83
aug-cc-pVTZ-PP 15.35 3.55 23.21 121.07
aug-cc-pVQZ-PP 7.46 1.86 11.77 58.46
aug-cc-pV5Z-PP 3.82 0.95 6.03 29.93

a See text for further details.

Table 3. Absolute Errors (kcal mol-1) in the MP2
Correlation Energy due to the Density Fitting
Approximation for a Test Set of Transition Metal
Complexesa

ABS∆jDF ABS∆std
DF ABS∆max

DF

cc-pVDZ-PP 0.0662 0.0925 0.4013
cc-pVTZ-PP 0.0188 0.0184 0.0716
cc-pVQZ-PP 0.0028 0.0029 0.0117
cc-pV5Z-PP 0.0022 0.0027 0.0107
aug-cc-pVDZ-PP 0.0746 0.0902 0.3866
aug-cc-pVTZ-PP 0.0119 0.0137 0.0550
aug-cc-pVQZ-PP 0.0030 0.0030 0.0136
aug-cc-pV5Z-PP 0.0028 0.0034 0.0171

a See text for further details.

Table 4. Relative Percentage Errors Introduced by the
Density Fitting Approximation for a Test Set of Transition
Metal Complexesa

∆jDF ∆std
DF |∆DF| ∆max

DF

cc-pVDZ-PP -0.0086 0.0067 0.0090 -0.0273
cc-pVTZ-PP -0.0022 0.0015 0.0023 -0.0067
cc-pVQZ-PP -0.0002 0.0007 0.0004 -0.0032
cc-pV5Z-PP -0.0001 0.0004 0.0003 -0.0018
aug-cc-pVDZ-PP -0.0094 0.0056 0.0096 -0.0255
aug-cc-pVTZ-PP -0.0007 0.0014 0.0014 -0.0030
aug-cc-pVQZ-PP 0.0003 0.0003 0.0003 0.0009
aug-cc-pV5Z-PP 0.0003 0.0002 0.0003 0.0009

a See text for further details.
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correlation energies that are closer to the conventional energy
and have a lower standard deviation. Comparison of parts a
and b of Figure 1, which are plotted at the same scale,
indicates that there is also a small improvement in the overall
accuracy of the fitting for augmented sets relative to standard
cc and that this is noticeably more pronounced with the
quadruple- and quintuple-� sets.

While k and l angular momentum functions were required
to optimize the quadruple- and quintuple-� MP2 fitting basis
sets, most quantum chemistry packages currently only
support i functions as a maximum. To gauge the errors
associated with such maxima imposed on the MP2 fitting
basis sets presented, the errors were calculated for the larger
basis sets truncated to a maximum l of 6 or 7 (i and k
functions, respectively) and are reported in Table 5. The same
statistical measures for the nontruncated sets are also repeated
in the table for ease of reference, along with the mean of
the absolute error (kcal mol-1) relative to the conventional
MP2 correlation energy.

The statistical data in Table 5 show that truncating the
MP2 fitting basis sets has a large effect on the magnitude of
the errors introduced by the density fitting approximation.
The truncation of the quadruple-� sets increases the mean
and standard deviation by almost 2 orders of magnitude,
truncating the quintuple-� sets such that lmax ) 7 increases
the mean errors by between 1 and 2 orders of magnitude
while truncating to lmax ) 6 increases it by more than 2 orders
of magnitude. These increases in the error due to the density
fitting approximation are displayed pictorially in the form
of normalized Gaussian distributions for the aug-cc-pVQZ-
PP and aug-cc-pV5Z MP2 fitting basis sets and truncations

Figure 1. Normalized Gaussian distributions of the relative percentage errors in MP2 valence correlation energy introduced via the
density fitting approximation for a test set of small and medium sized transition metal complexes. (a) Errors for the cc-pV n Z-PP
basis sets. (b) Errors for the aug-cc-pV n Z-PP basis sets. The normal distributions are defined by y(x) ) (1)/(σ√2π) ·
e-(1)/(2)((x-xj)/(σ))2, where σ represents the standard deviation and xj the mean.

Table 5. Relative Percentage and Absolute (kcal mol-1)
Errors Introduced by the Density Fitting Approximation
Using Truncated Auxiliary Basis Sets for a Test Set of
Transition Metal Complexes; lmax Indicates the Angular
Momentum Functions at which the Basis Has Been
Truncateda

lmax |∆DF| ∆std
DF ∆max

DF ABS∆jDF

cc-pVQZ-PP 7 0.0004 0.0007 -0.0032 0.0028
6 0.0244 0.0255 -0.0952 0.1722

cc-pV5Z-PP 8 0.0003 0.0004 -0.0018 0.0022
7 0.0095 0.0099 -0.0371 0.0693
6 0.0656 0.0677 -0.2444 0.4839

aug-cc-pVQZ-PP 7 0.0003 0.0003 -0.0009 0.0030
6 0.0256 0.0295 -0.1070 0.1771

aug-cc-pV5Z-PP 8 0.0003 0.0002 0.0009 0.0028
7 0.0103 0.0127 -0.0451 0.0680
6 0.0653 0.0746 -0.2607 0.4482

a See text for further details.

Figure 2. Relative percentage errors due to the density fitting approximation in the MP2 valence correlation energy of a test set
of small and medium sized transition metals when truncated MP2 fitting basis sets are employed. lmax indicates the angular
momentum functions at which the basis has been truncated. (a) aug-cc-pV5Z MP2 fitting basis and truncations. (b) aug-cc-
pVQZ-PP MP2 fitting basis and truncations. The normal distributions are defined by y(x) ) (1)/(σ√2x)e-(1)/(2)((x-xj)/(σ))2, where σ
represents the standard deviation and xj the mean.
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in Figure 2. Equivalent plots for the non-augmented sets
show much the same trends and thus are not presented here.
In general, truncating the augmented MP2 fitting basis sets
produces a larger increase in the mean unsigned error,
standard deviation, and maximum error than truncating the
nonaugmented sets, perhaps suggesting that high angular
momentum functions have a larger effect on the fitting of
diffuse functions in the orbital set. It is also worth noting
that all of the truncated auxiliary basis sets overestimate the
correlation energy for every complex in the test set.

Both Table 5 and Figure 2 display a large reduction in
the quality of the fitting, when the MP2 fitting basis sets are
truncated, such that the relative percentage errors are larger
than those shown for cc-pVDZ-PP in Table 4. A comparison
with Table 2 indicates that when both quadruple- and
quintuple-� MP2 fitting sets are truncated such that lmax )
6, the mean unsigned error and standard deviation are around
2 orders of magnitude smaller than the error in the orbital
basis. It should be noted that the maximum relative percent-
age error within the test set for the truncated MP2 fitting
basis sets is only around 1 order of magnitude smaller than
that of the respective orbital basis. Inspecting the absolute
errors from Table 5 reveals that truncating the quintuple-�
basis sets to lmax ) 6 produces a mean error of almost 0.5
kcal mol-1, which compares to a mean error from Table 2
of 29.9 kcal mol-1 in the orbital basis when it is compared
to the CBS estimate. Despite this MP2 fitting basis meeting
the initial criteria suggested earlier for a sufficiently accurate
fit, such large basis sets are generally only employed when
high accuracy is desired and it seems that, for the majority
of applications, it should only be used with a sizable degree
of caution. The extent of both the relative and absolute errors
for the remaining truncated basis sets suggests that they could
be applied more readily, but again some caution is advisable.
Because of the vastly superior accuracy of the nontruncated
MP2 fitting basis sets it is recommended that truncated basis
sets should not be utilized when higher angular momentum
functions are supported, despite their smaller size.

4. Conclusions

MP2 fitting auxiliary basis sets for density fitted correlated
post-HF ab initio methods have been optimized for use with
the cc orbital basis sets for the 4d transition metal elements
Y-Tc and Rh-Pd. These cc-pVnZ-PP and aug-cc-pVnZ-
PP MP2-fit (where n ) D, T, Q, and 5) sets have been shown
to provide accurate density fitting with the MP2 method for
small to medium sized transition metal complexes with a
range of oxidation states. The relative error introduced by
the use of these sets compared to conventional MP2 is
negligible, generally between 3 and 4 orders of magnitude
smaller than the error due to orbital basis set incompleteness
and, as shown by the absolute errors, is also an insignificant
percentage of the overall correlation energy. Thus, the
auxiliary basis sets presented can be used with confidence
in accurately reproducing conventional correlation energies.

While truncating these MP2 fitting basis sets may be
desirable from the point of view of utilizing them in a larger
range of quantum chemical packages, removing functions
from the quintuple-� sets such that lmax ) 6 introduces

significant errors. Truncating quadruple-� to lmax ) 6 and
quintuple-� to lmax ) 7 also introduces errors considerably
larger than before truncation, and thus the application and
desired degree of accuracy should be taken into account
before employing them.

All eight of the MP2 fitting auxiliary basis sets presented
in this work will be made available via the Environmental
Molecular Sciences Laboratory Basis Set Exchange32 Web
site, http://gnode2.pnl.gov/bse/portal, and can also be found
in the Supporting Information.
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Abstract: In this study, we present a scheme for the evaluation of electron delocalization and
conjugation efficiency in lineraly π-conjugated systems. The scheme, based on the natural bond
orbital theory, allows monitoring the evolution of electron delocalization along an extended
conjugation path as well as its response to chemical modification. The scheme presented is
evaluated and illustrated by means of a computational investigation of π-conjugation in all-
trans polyacetylene [PA; H(-CHdCH)nsH], polydiacetylene [PDA, H(-CtCsCHdCH)nsH],
and polytriacetylene [PTA, H(-CtCsCHdCHsCtC)nsH] with up to 180 carbon atoms, all
related by the number of ethynyl units incorporated in the chain. We are able to show that for
short oligomers the incorporation of ethynyl spacers into the PA chain increases the π-delo-
calization energy, but, on the other hand, reduces the efficiency with which π-electron
delocalization is promoted along the backbone. This explains the generally shorter effective
conjugation lengths observed for the properties of the polyeneynes (PDA and PTA) relative to
the polyenes (PA). It will also be shown that the reduced conjugation efficiency, within the NBO-
based model presented in this work, can be related to the orbital interaction pattern along the
π-conjugated chain. We will show that the orbital interaction energy pattern is characteristic for
the type and the length of the backbone and may therefore serve as a descriptor for linearly
π-conjugated chains.

1. Introduction

For the rational design of functionalized π-conjugated
polymers, which are extensively being investigated as
materials for application in nanoscience, molecular electron-
ics, photonics, and other areas,1,2 a more thorough under-
standing of electron delocalization and conjugation efficiency
is crucial. In this class of materials, polyacetylene [PA;
H(-CHdCH)nsH] is the prototypical compound. The
insertion of ethynyl units into a PA scaffold leads to rodlike
polymers, such as the polydiacetylenes [PDAs, H(-CtCs

CHdCH)nsH],3,4andthepolytriacetylenes[PTAs,H(-CtCs
CHdCHsCtC)nsH]5-7 (see Scheme 1). It has been
observed that these polyeneynes (PDAs, PTAs) show better
thermal stability and solubility than the original polyenes
(PAs), and, in addition, the capability to form functional
derivatives with fully planar, sterically unhindered frame-
works.6

Obviously, the incorporation of ethynyl groups in the PA
scaffold will affect the molecular as well as the electronic
structure of these compounds. Properties such as the bond
length alternation (BLA),8 the maximum absorption wave-
length (Emax),

9 and the second-order hyperpolarizabilities
(γ)10 were reported to differ substantially between polyenes
and polyeneynes. It was also shown that γ and other
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properties saturate at shorter effective conjugation length
(ECL) relative to PA, indicating that conjugation efficiency,
i.e., the ability to promote electron delocalization along the
backbone, is less pronounced.

These observations prompted us to explore the evolution
of π-conjugation in PA, PDA, and PTA. For that matter, we
studied the response of selected physical observables to the
length of the backbone, and related these observations to
the evolution of the delocalization energy along the π-con-
jugated chain using a new scheme based on the natural bond
orbital (NBO) analysis.11-13 The NBO analysis was shown
to be a useful tool for the investigation of π-conjugation in
earlier work.8,14-16

In this work we present and validate a new NBO-based
scheme consisting of three different protocols for the
evaluation of electron delocalization and conjugation ef-
ficiency in linearly π-conjugated chains. We will see that
each π-conjugated backbone shows an orbital interaction
energy profile which is characteristic for its type (PA, PDA,
or PTA) as well as for its length. The orbital interaction
profile may thus serve as a valuable molecular descriptor
for this class of compounds. Furthermore, the scheme is
general and transportable to other π-conjugated systems,
including donor-acceptor functionalized ones.

2. Computational Details

In this work we study the oligomers of PA, PDA, and PTA
with up to 180 carbon atoms. In the case of PDA, the
hydrogen atom of the CdCsH terminus is replaced by an
ethynyl unit for better comparison with the other oligomers
(note that with this definition the monomers of PDA and
PTA are identical). Systems with 18, 30, 42, etc. carbon
atoms are observed for all of the three types of backbones.

The geometry optimizations and the NBO analysis were
performed within the DFT framework,17 using the hybrid
Becke three-parameters B3LYP functional18-20 with a
6-31G(d,p) basis set of Gaussian orbitals.21 The optical
absorption properties were computed using Zerner‘s INDO/S
method22 on the B3LYP/6-31G(d,p) optimized geometries.
In the ZINDO calculations, all occupied and virtual orbitals
were retained in the active space. The excitation energies
listed refer to the first allowed transition, which, in all the
cases considered, is a π-π* transition.

Polarizabilities (R) and second-order hyperpolarizabilities
(γ) were computed on the B3LYP geometries using the
coupled-perturbed (CP) Hartree-Fock approach23 based on
a semiempirical MNDO Hamiltonian.24 The longitudinal
polarizabilities and hyperpolarizabilities correspond to the
tensor elements in the direction of the charge transfer axis
(Rzz and γzzzz in our reference system) of the molecule. In
order to compare computed and measured γ values, the
theoretical values were multiplied by factors derived from
the phenomenological approach.25

The DFT and ZINDO calculations were carried out using
the Gaussian03 package,26 while the calculations of polar-
izabilities and second-order hyperpolarizabilities were per-
formed with the program MOPAC2000.27 The NBO analysis
was performed using the program NBO 5.0.28

The tendency of B3LYP to overestimate electron delocaliza-
tion29-32 as well as its failure to reproduce the polarizabilities
and hyperpolarizabilities33,34 of linearly conjugated systems
are well-known. Various forms of long-range-corrected
exchange functionals have been shown to overcome these
problems.35-37 At the same time, it is not obvious that there
is one single DFT functional that makes excellent predictions
for all observables considered here. In a recent study on PA
chains, Tozer and co-workers demonstrate that the Coulomb-
attenuated CAM-B3LYP DFT method38 provides a much
better estimate of the BLA,35 but, on the other hand, also
confirm the findings of Ma et al.39 that the standard B3LYP
HOMO-LUMO energies are much better suited to model
the excitation energies for the long chains. This observation
is of relevance here, as the NBO orbital interaction energies
directly depend on the orbital energy differencies.

Even though it is a small basis set, the 6-31G(d,p) basis
has frequently been used in similar investigations, since the
addition of more diffuse functions rather quickly leads to
linear dependency issues.35,36 It was recently shown36 that
the trend observed for the long-range-corrected B3LYP and
the MP2 longitudinal polarizability and hyperpolarizability
of PDA as a function of chain length is well preserved when
switching from a 6-31G(d) to a 6-31+G(d) basis set.

Since this study is about reproducing trends in similar
series of compounds rather than to present highest quality
data on these observables for the oligomers of PA, PDA,
and PTA, we resorted to semiempirical methods that appear
to reproduce the available experimental data rather well (see
also considerations on method performance in the respective
sections of this article or ref 8). For short oligomers of PA,
PDA, and PTA, for which experimental absorption spectra
are available, the ZINDO calculations are in reasonable
agreement with the experimental lowest allowed excitation
energies. The polarizabilities and hyperpolarizabilities com-
puted by means of an MNDO Hamiltonian reproduce the
trend observed in the experiment rather well.6,8

Since PDA and PTA contain alternating single, double,
as well as triple bonds, the traditional definition of the BLA
needs to be extended. In earlier work on PTA oligomers,8

we had introduced a generalized parameter δR defined as
the difference between the averages of the saturated and the
unsaturated bond lengths:

Scheme 1. The Series of Oligomers Considered in This
Study
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δR) [(CD -CT)+ (CT -CT)]/2- [(CtC)+ (CtC)]/2

(1)

where (CD - CT) and (CT - CT) represent the lengths of the
single bonds in between a double and a triple bond or two
triple bonds, respectively. For PDA, which only shows one
kind of single bond, eq 1 is reduced to

δR) (CD -CT)-[(CdC)+ (CtC)]/2 (2)

whereas for PA the standard definition applies

δR) (C-C)- (CdC) (3)

The values of δR are always those in the center of the
oligomers. On account of the different definitions given
above, only the evolution of the δR for a given chain type
will be observed; comparisons of δR for different types of
backbones are to be made with care.

The properties of the oligomers considered in this work,
at least to smaller chain length, have already been investi-
gated extensively by other researchers9,33,40-54 using dif-
ferent methodologies and levels of theory.

3. Details of the Analysis of Electron
Delocalization and Conjugation Efficiency

The basic approach used for the analysis of electron
delocalization in π-conjugated systems applied here is
outlined in detail in earlier work.15,55 In these articles we
show that the π-delocalization energy can be evaluated either
by means of the deletion of the weakly occupied π* NBOs
contained in the path, or by the summation of the interaction
energies between the adjacent unsaturated orbitals along the
pathway. The scheme presented also applies for σ-conjuga-
tion. In this work, however, we will exclusively focus on
π-electron delocalization, since in the through conjugated
systems considered here, in-plane σ-hyperconjugation is not
expected to play a major role.

Whereas for the (quantitative) evaluation of π-electron
delocalization various approaches have been proposed,56-62

the conjugation efficiency, to the best of our knowledge, lacks
a clear definition. It is generally understood as the ability of
a backbone to promote electron delocalization. The ECL and
the value of the property under consideration at infinite chain
length offer a quantitative measure for the conjugation
efficiency of a given backbone. A system with a backbone
that promotes electron delocalization well, will, in general,
show a large ECL as well as a significant evolution of the
property considered.

The first estimate of conjugation efficiency therefore is in
the response of the properties to chain length extension, i.e.,
the slope of the property as a function of chain length. For
the systems studied here, those backbones whose properties
show the strongest response to chain length extension will
also show the largest ECL and the strongest evolution of
the respective property.

In this research, we are using three different protocols to
analyze π-conjugation presented in the next section.

π-Delocalization Energy Per Carbon Atom. The total
π-delocalization energy (Eπ) is evaluated by calculating the
energies resulting from the deletion of all vertical π* orbitals

along the chain. To allow a direct comparison of the Eπ

values for the different oligomers, Eπ is normalized to the
number of π f π* donor-acceptor orbital interactions in
the chain, which corresponds to n(C) - 2, where n(C) is the
number of carbon atoms in the oligomer (Eπ

norm ) Eπ/n(C)
- 2; see Scheme 2).

The orbital interaction energy profiles make use of the
donor-acceptor view of the chemical bond in NBO theory,
which renders itself nicely to explore electron delocalization
along a polymer chain. The (second order) orbital interaction
energies (SOIE) between π and π* donor/acceptor orbital
pairs are given by the expression:

ESOIEij
) qi

F(i, j)2

εi - εj
(4)

where i and j are the donor and the acceptor NBOs under
consideration, respectively, εi and εj are the corresponding
orbital energies, qi is the donor orbital occupancy, and F(i,j)
is the element of the Fock matrix in the NBO basis
connecting the interacting orbitals.

The interaction energies between neighboring unsaturated
bonds along the backbone for 30-atom chains of the three
oligomers considered here are shown in Figure 1. The
evolution of the SOIE interactions along the chain defines a
profile which is characteristic for the chain type and also
for the chain length.

In PA, where the chain consists of identical unsaturated
bonds, the orbital interactions will be very similar, varying
slowly when moving from the terminal to the central part of
the oligomer. If the chain is long enough, the orbital
interaction energies in the core of the oligomer will reach
an asymptotic value, which is the same for all oligomers of
that type. On the other hand, in PDA or PTA the orbital
interactions energies between double and triple bonds, and
between triple and triple bonds, will differ considerably,
leading to a more “rugged” profile of the chain. Again, all
these specific interactions energies will vary slowly when
moving toward the center of the oligomer, to finally reach
their respective asymptotic values. Therefore, we will obtain
interaction energy profiles that are characteristic for the type
of chain as well as for its length. Note that in Figure 1 these

Scheme 2. Schematic Representation of the PTA Polymer
with the π fπ* Interactions Accounted for the Calculation
of Eπ

norma

a In the scheme n(C) stands for the number of carbon atoms in
the oligomer. For PDA and PA, the interactions are accounted for in
the same manner.
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profiles are scanned from “left to right” along the chain,
without considering the (symmetric) interactions in opposite
direction.

Response of the Backbone to the Extension of the
π-Conjugated Chain. To determine the response of the
backbone to chain extension, the oligomers are partitioned
into a core backbone and into two terminal π-conjugated
units, as shown in Scheme 3. This allows the definition of a
parameter ∆EπSOIE

∆EπSOIE )∑ EπSOIE
core (n+ 2)-∑ EπSOIE(n) (5)

where ∑EπSOIE
core (n + 2) is the sum of the EπSOIE energies

between all vertical π orbitals of the core backbone in the
oligomer n + 2, and ∑EπSOIE(n) is the sum of the EπSOIE

energies between all vertical π orbitals of the oligomer of
size n. The EπSOIE interactions to be included in the
summations are shown in Scheme 3. For PTA and PDA an
extra monomer unit covers six, respectively four more carbon
atoms. For PA, the additional monomer unit was selected to
cover six carbon atoms (as in PTA). The reference system
is the geometry optimized oligomer of size n. This means
that ∆EπSOIE also takes into account the contribution of the
geometry relaxation in response to the extension of the
π-conjugation pathway. Clearly, the values of ∆EπSOIE

depend on the length of the terminal units assumed in the
definition. However, we found that for different lengths of the
terminal segments, the comparison of the values of ∆EπSOIE

and their evolution with respect to the number of carbon
atoms is very similar, and therefore leads to the same
observations (not shown). Also, the values of the SOIEs are
functions of the εi-εj energy gap (see eq 1), which, in turn,
is dependent on the theoretical method adopted. However,
from previous studies15,55 we know that the B3LYP orbital
interaction energies computed for the purpose of the com-
parison of similar compounds (polyenes and polyeneynes)
appear to be adequate.

4. Evolution of the Molecular Properties as a
Function of the Chain Length

Bond-Length Alternation. The evolution of δR, as
defined in eqs 1-3, is reported as a function of the reciprocal
number of carbon atoms (1/C) in Figure 2. δR of PA
decreases to reach a constant value (zero gradient for δR vs
1/C) at about 33 double bonds. For PDA and PTA the
response of δR to chain length extension is nearly identical;
δR converges to an effective conjugation length (ECL) of
20-22 double bonds for both compounds,8 a value substan-
tially smaller that the one of PA. The extrapolated infinite
chain BLA for PDA and PTA is significantly larger than
that of PA (0.106 and 0.078, respectively, versus 0.056 Å),
but, due to the differences in the definition of the respective
δR values, the comparison has to be made with care.

The BLA value extrapolated for a polymer of infinite chain
length is in agreement with the finding of Tozer et al. using
the same functional and basis set.35 Using the CAM-
B3LYP38 and BHHLYP18 functionals, these authors find an
infinite chain value for the BLA of 0.087 and 0.089 Å, which
is well within the experimental range of 0.08 ( 0.03 Å.63

These results confirm the tendency of the generic B3LYP
method to overestimate delocalization and presumably also
the ECL. On the other hand, the present study does not
confirm the presence of a minimum of the BLA before
reaching the ECL (infinite chain value) as suggested by Tozer
and co-workers.35

The evolution of the first allowed excitation energy (Emax)
and the HOMO-LUMO energy gap as a function of the
reciprocal number of carbon atoms of the oligomers inves-
tigated are reported in Figure 3. For short oligomers we
observe excitation energies for PA that are close to those of
PDA and PTA. As the oligomer chain increases, the
excitation energy of PA decreases most rapidly, and, for the
largest oligomers considered in this study, it is significantly
lower than that calculated for the other two types of
backbones. The excitation energy of PDA responds slightly
faster than that of PTA to chain extension, but converges to
the same value at a very large ECL (>75 unsaturated bonds).
The extrapolated ZINDO/S value for the excitation energy
of PA is equal to about 1.8 eV, in agreement with the
experimental optical gap of 1.5-1.8 eV.64,65

The longitudinal polarizability RL of a linearly π-conju-
gated compound is proportional to the length of the system
for large oligomers.33,44,66-68 This means that for these
compounds the polarizability per unit length approaches an
asymptotic value. Indeed, for all of the oligomers investigated
in this work, the values of RL divided by the number of
carbon atoms of the backbone (RL/C) appear to slowly
converge to an asymptotic limit (Figure 4a). For short
oligomers the values of RL/C are very similar for all
compounds. Upon increasing chain length, the value of RL/C
of PA evolves most rapidly, reaching an ECL of 38-40
double bonds, a value significantly higher than that extrapo-
lated for PDA and PTA (28-30 unsaturated bonds). This is
in good agreement with experiment9 and other theoretical
predictions.45,52

For short π-conjugated oligomers the longitudinal second-
order hyperpolarizability γL follows the power law γL ) γmna

Figure 1. πf π* SOIEs profile (in kcal mol-1) along a fixed-
length 30 carbon atoms backbone for PA (purple dots), PDA
(green dots), and PTA (blue dots). The labels Df D, Tf D,
Tf T, and Df T stand for the πCdCf π*CdC, πCtCf π*CdC,
πCtC f π*CtC, and πCdC f π*CtC interactions, respectively.
The graph reports the πf π* SOIEs determined by scanning
the backbone from left to right. The profile corresponding to
the scan in opposite direction is the mirror image to the one
reported.
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(where n is the number of oligomer units, and γm and a are
constants).69-71 For large oligomers, the γL values deviate
from this power law, thus indicating inward saturation. In
previous work8 we showed that the γ values calculated for
the PTA oligomers up to 54 carbon atoms are in satisfactory
agreement with those determined from third harmonic
generation (THG) and degenerate four-wave mixing (DFWM)
measurements.72 This observation is confirmed also for the
longer chains considered here. Figure 4b reports the evolution
of the values of γL per carbon atom of the backbone (γL/C)
with respect to oligomer size. The trend is similar to that
discussed above for RL/C. The γL/C value of PA evolves
much more rapidly than that of any other type of backbone.
The γL/C values of the PDA and PTA oligomers again are
very similar and converge to the same ECL. The extrapola-
tion yields an ECL slightly larger than that evaluated for

the BLA, but more similar to the one discussed for the
polarizability.

In summary, we see that for all of the properties
investigated in this work (Table 1), the incorporation of an
ethynyl group into a PA chain has a significant effect on the
evolution of the backbone properties. This is reflected by
the slope (gradient) of the various properties with respect to
chain length extension as well as by the difference in ECL
between PA and PDA/PTA. For PTA, we confirm the
experimental observation of generally shorter ECLs relative
to PA.6,10 On the other hand, the insertion of a second triple
bond when going from PDA to PTA, shows no additional
impact on the values of the properties, at least as far as their
evolution as a function of the chain length is concerned. For
the excitation energies and the polarizabilities, we even
observe convergence to the same value for the two backbones.

5. Analysis of π-Electron Delocalization in
PA, PDA, and PTA Oligomers

For all compounds investigated, the π-delocalization energy
per donor-acceptor interaction (Eπ

norm; see Scheme 2 for
definition of term) monotonically increases with increasing
oligomer size (Figure 5). For short oligomers, PTA shows
the largest Eπ

norm, followed by PDA and PA. However, Eπ
norm

of PA evolves most rapidly with increasing oligomer size.
Therefore, for longer chains PA surpasses PDA to nearly
reach the infinite chain value of Eπ

norm for PTA. This result
supports the observation made on the basis of the computed
molecular properties that the incorporation of triple bonds
in the PA chain increases the π-delocalization energy, but
that in larger chains of PDA and PTA π-electron delocal-
ization is promoted less efficiently.

From the response of the backbone to the elongation of
the chain length in terms of orbital interactions (∆EπSOIE;
eq 5), we see that for all oligomers investigated, ∆EπSOIE

converges to an asymptotic value (Figure 6). The addition
of further units only has a constant effect (delocalization
energy gained by connecting fragments to a saturated core)
and does not lead to further enhancement of π-electron

Scheme 3. Schematic Representation of the Partitioning of a PTA Oligomer into a Core Backbone and Two Extra Terminal
π-Conjugated Unitsa

a ∆EπSOIE is calculated as the difference between the EπSOIE of the core backbone (∑EπSOIE
core ) and EπSOIE of an oligomer without the two

terminal units (∑EπSOIE
back ). For PDA and PA, ∆EπSOIE is evaluated in the same manner.

Figure 2. Evolution of the calculated δR parameter (in Å) as
function of the reciprocal number of carbon atoms (1/C) for
the PA (*), PDA (0),and PTA (O) oligomers at the B3LYP/6-
31G(d,p) level of theory. The alternation parameter is deter-
mined for the central unit using eqs 1-3.
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delocalization in the backbone. Again, we see that ∆EπSOIE

of PA increases most rapidly to take a value significantly
larger (about 8 kcal mol-1) than that of the polyeneynes.
The evolution of ∆EπSOIE for PDA and PTA is similar, with
PTA converging to a value of 2 kcal mol-1 lower than that
of PDA. Given the much larger gradient of ∆EπSOIE with
respect to chain length, the PA backbone again appears to
show the more enhanced π-conjugation efficiency, which is
consistent with the observed evolution of the molecular
properties.

Finally, the analysis of π-electron delocalization along the
backbone in terms of π f π* orbital interactions gives us
more insight in how π-electron delocalization propagates
along the different types of chains. The interaction energy
profiles for the polyenes and the polyeneynes are vastly
different. Whereas we have a “smooth” interaction energy
profile for PA, we observe an oscillating (“rugged”) profile
for PDA and PTA. In the polyeneynes the πCtC f π*CtC

(Tf T) and the πCdCf π*CtC (Df T) interaction energies

are considerably larger than the πC′Cf π*CdC (Tf D) ones.
This interaction is also weaker than the D f D one in PA.
In the orbital interaction model used here, the comparatively
weak T f D interactions in the polyeneynes will reduce
delocalization relative to the polyene and therefore lower
their conjugation efficiency.

For short oligomers, the sum of orbital interactions in the
polyeneynes is still larger than in PA, leading to a larger
value for the overall delocalization energy. For the extended
oligomers, the reduced promotion of electron delocalization
due to the relatively weak T f D interactions will reverse
this situation in favor of PA (see also Figure 5). The
observation that the D f D interaction energies in PA are
lower than the T f T interaction energies in PTA is also in
agreement with the conclusions reported in a recent study
of von Schleyer et al.,73 in which the π-delocalization energy

Figure 3. (a) Evolution of the calculated first allowed excita-
tion energy (Emax) (in eV) as function of the reciprocal number
of carbon atoms (1/C) for the PA (*), PDA (0), and PTA (O)
oligomers computed at ZINDO level. (b) Evolution of the
B3LYP LUMO-HOMO energy gap (in eV) as function of the
reciprocal number of carbon atoms (1/C) for the PA (*), PDA
(0), and PTA (O) oligomers.

Figure 4. (a) Evolution of the calculated longitudinal
polarizability per carbon atom of the backbone (RL/C) (in
10-25 cm3) as a function of the number of carbon atoms for
PA (*), PDA (0), and PTA (O) oligomers computed at the
CPHF-MNDO level of theory. (b) Evolution of the calculated
longitudinal second-order hyperpolarizability per carbon
atom of the backbone (γL/C) (in 10-34 esu) as a function of
the number of carbon atoms for the PA (*), PDA (0), and
PTA (O) oligomers computed at the CPHF-MNDO level of
theory. The experimental values available for PTA are listed
as single filled dots.
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of 1,3-butadiyne and 1,3-butadiene were compared by means
of the computed heats of hydrogenation.

From Figure 7a,b, which shows all orbital interaction energies
for all oligomers of PA and PDA, we see that for both
compounds each specific interaction converges to a specific
asymptotic value. For PA, the interaction energy between the

Table 1. Conjugation Efficiency in Terms of the Effective Conjugation Length (ECL), the Extrapolated Value for a Polymer of
Infinite Chain Length, and the Gradient of the Properties with Respect to Chain Length Extension (Slope) for the Three
Types of Backbones Investigated in This Worka

PA PDA PTA

ECLb n ) ∞c sloped ECLb n ) ∞c sloped ECLb n ) ∞c sloped

δR ∼32 0.056 0.301 (32) ∼21 0.106 0.199 (26) ∼21 0.780 0.214 (24)
excitation energy ∼49 1.81 18.6 (54) ∼37 2.33 12.9 (50) ∼34 2.33 9.5 (54)
LUMO-HOMO energy gap ∼64 1.22 22.2 ∼50 1.70 19.0 ∼52 1.80 18.8
R/C ∼57 135 - ∼49 96 - ∼51 107 -
γ/C ∼82 348 - ∼77 86 - ∼77 82 -
∆EπSOIE ∼32 20.8 - ∼21 12.7 - ∼21 10.7 -
Eπ

norm - 15.8 -20.0 - 15.4 -11.9 - 15.9 -14.2

a δR in Å, excitation energies in eV, LUMO-HOMO gaps in eV, R/C in 10-25 esu, γ/C in 10-36 esu, ∆EπSOIE, and Eπ
norm in kcal mol-1. b The

ECL indicates the number of unsaturated bonds for which the observable considered exceeds 99.9% of the infinite chain value.
c Extrapolated value for a polymer of infinite chain length based on 4th-order polynomials (correlation coefficient greater than 0.999). d Slope
of the linear segment of the curves (in 1/C representation) with the maximum number of carbon atoms considered for the linear regression.

Figure 5. Eπ
norm values as a function of reciprocal number of

carbon atoms for the PA (*), PDA (0), and PTA (O) oligomers,
computed at the B3LYP/6-31G(d,p) level of theory (see also
Scheme 2).

Figure 6. Evolution of ∆EπSOIE (eq 5) as a function of the
reciprocal number of carbon atoms for the PA (*), PDA (0),
and PTA (O) oligomers computed at the B3LYP/6-31G(d,p)
level of theory. The definition of backbones and terminal
groups is given in Scheme 3.

Figure 7. π f π* interaction energies (in kcal mol-1) for all
oligomers of PA (up to n ) 50) and PDA (up to n ) 29). As
in Figure 1, the backbone is scanned from left to right, only
showing the symmetry-unique interaction energies. The graph
a starts with butadiene (n ) 2; listed in the center), which
shows just one unique orbital-orbital interaction, and ends
with the interaction energies of the pentadecamer (n ) 50) of
PA. In addition, the interaction energies in the core of the
hectamer (n ) 100) are shown. In panel b, the double-triple
bond (upper part) and triple-double bond interactions (lower
part) are shown from the monomer up to the n ) 29 system.
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outermost double bond (donor) and its next neighbor (acceptor),
for example, converges to a value of 14.6 kcal mol-1 for chains
larger than 20 atoms, whereas the interaction between orbitals
in the center (core) of the chain converges to a value 3.8 kcal
mol-1 higher for chains longer than 30 atoms. Obviously, the
asymptotic value of the interaction energies increases as one
moves toward the core of the backbone. (see also Figure 1 for
the 30 carbon atom chain); at the same time we observe that
the interaction energies converge more slowly.

For PDA and PTA (not shown), we observe a very similar
convergence pattern for the orbital interactions. Relative to
PA, the asymptotic values for the interactions in the core of
the PDA backbone are somewhat higher for the Df T bond
interactions (19.0 kcal mol-1), but distinctly lower (15.8 kcal
mol-1) for the T f D bond interactions. Also, the margin
between the interaction energies among the inner (core) and
the outer bonds is much smaller in PDA (and also in PTA).
This observation is yet another expression of the reduced
response of PDA and PTA to chain length extension.

Finally, the stability of the converged values of the
interaction energies is an illustration of the reliability as well
as the numerical stability of the models used here.

In summary, from the three schemes of analysis we see
that the incorporation of an ethynyl group into a PA chain
increases the total delocalization energy, but, at the same
time, introduces relatively weak T f D interactions in the
backbone, which are responsible for the reduced conjugation
efficiency in PDA. The insertion of a second triple bond
(PDA f PTA) does not add any more “damage”, and
therefore the properties of PDA and PTA show similar
conjugation efficiency.

6. Conclusions

The schemes of analysis introduced here show that the insertion
of ethynyl groups into a PA chain increases the total π-delo-
calization energy for short PDA and PTA oligomers, but, very
importantly, reduces the efficiency with which π-electron delo-
calization is promoted. The less efficient π-electron delocal-
ization is also responsible for the generally shorter ECL observed
for the properties of the polyeneynes relative to the polyenes.
Accordingly, all physical observables computed for PA evolve
more rapidly as a function of the oligomer size, and converge
to an ECL larger than those computed for PDA and PTA. The
insertion of a second ethynyl group into the PDA chain does
not further modulate the efficiency with which π-electron
delocalization is promoted. The loss of conjugation efficiency
observed for the polyeneynes is the result of the relatively weak
orbital interactions involving the triple bond π orbitals as donors
and the double bond π* orbitals as acceptors (TfD interaction;
see Figures 1 and 6). These weak orbital interactions represent
the bottleneck in the delocalization of charge along the chain.
The orbital interaction energy profile appears to be a very
promising scheme of analysis, also because it is characteristic
for the compound investigated. It may thus render the basis for
a molecular descriptor for this class of compounds.
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Abstract: We have investigated various types of π-interactions, where one of the interacting
π-systems is represented by an aromatic benzene molecule. The system includes Rg-π, CH-π,
π-π(D), π-π(T), H-π(T), π+-π(D), π+-π(T), H+-π(T), π+2-π(D), M+-π, and M+2-π complexes, where
Rg denotes a rare gas or noble atom, M denotes a metal, and D/T indicates displaced-stacked/
T-shaped structure. The microsolvation effect is also considered. We note that the interaction
between a cationic π system and a neutral π system (πcation-π interaction) is so far ambiguously
considered as either π-π or cation-π interaction. In terms of total binding energy, the πcation-π
interaction is weaker than the cation-π interaction, but much stronger than the π-π interaction.
When the hydrophilic (N-H)+ or (C-H)+ group in a singly charged π+ system (as in protonated
histidine, arginine, pyridine, or dimethyl imidazolium) interacts with a π-system, the complex
favors a T-shaped form [π+-π(T) complex]. However, in the presence of polar solvating molecules
or counteranions, these species interact with the (N-H)+/(C-H)+ group, while the π+ system
interacts with the neutral aromatic ring. Then, the displaced-stacked form [π+-π(D) complex] is
favored or otherwise nearly isoenergetic to the π+-π(T) form. The π+-π systems are stabilized
mainly by both dispersion and electrostatic energies. Ternary diagrams using either attractive
energy components or both attractive and repulsive energy components show that the π+-π(D)
complexes have more contribution from dispersion energy but less contribution from induction
energy than the π+-π(T) complexes, while both complexes have similar percentage contributions
from electrostatic and exchange energy components. In particular, the π+-π(D) complexes are
found to be distinctly different from the π-π complexes and the non-π organic or metallic cation-π
complexes.

1. Introduction

Nonbonding intermolecular interactions involving aromatic
rings1-5 are pivotal to the stabilization of proteins, enzyme-
drug complexes, DNA-protein complexes, organic su-
pramolecules, and nanomaterials.1-11 In the last two decades,
extensive studies have been done to understand the nature
of π-complexes including the Rg-π interaction,12,13 H-π/
CH-π interaction,6,14,17-22 π-π interaction,7,23-43 cation-π
interaction,44-52 and anion-π interaction.53-57 Extensive
investigations have been made on the energetic and geo-
metrical significance of π-interactions in stabilizing π

systems.58-85 Theoretical interpretations based on high level
ab initio calculations have been instrumental in understanding
the nature of π-interactions. The strength of the π-interactions
is determined by the combined effect of attractive forces
(electrostatic, dispersive, and inductive) and repulsive forces
(exchange repulsion). Each of these components shows
distinguished differences in physical origin, magnitude, and
directionality. The dominant attractive energy component in
the π-π interaction is the dispersion energy,23,37,43,68 while
that in the cation-π interaction is the electrostatic and
induction energies.44-52

Interactions between the cationic π-systems (πcation) and
neutral π systems are present in many biological and* Correponding Author e-mail: kim@postech.ac.kr.
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macromolecular systems and organic and metallo-organic
systems. For example, the interactions play a pivotal role in
various ways like (i) forming protein-drug complexes,86-92

(ii) stabilizing proteins, particularly protein surfaces,93-95 (iii)
stabilizing protein-protein complexes,96,97 (iv) assisting
catalytic activities at the catalytic site of proteins,96,97 (v)
stabilizing protein-DNA complexes,98,99 (vi) molecule-
recognizing artificial receptors for neutral or π-cationic
guests,100,101 (vii) interlocking macromolecules in molecular
machines,102,103 (viii) self-assembling supramolecular struc-
tures and packing crystal structures,104,105 and (ix) controlling
conformations in regio- and stereoselective organic syn-
thesis.106,107

In experiments, the concept of host-guest interaction
between a neutral aromatic ring (benzene and naphthalene
derivatives or tetrathiafulvalene) and the tetracationic
cyclophane100,101 has been explored as a fundamental com-
ponent in constructing diverse catenanes and rotaxanes.102,103

Upon interacting with a π-system, the quinolinium cation is
bound to it more strongly than quinoline.108 Nitrogen-
containing aromatic cations are widely used for room
temperatureionicliquids109,110aswellasanionrecognition.111,112

The π-aromatic ring of triclosan, a general purpose biocide,
interacts strongly with a positively charged nicotinamide ring
of nicotinamide adenine dinucleotide(NAD+) located in the
active site of enoyl-acyl carrier protein reductase (ENR).86

In protein structures, the interactions of neutral aromatic
amino acids (Phe, Tyr, Trp) with a positively charged π-cloud
of arginine are more commonly observed than those with
cationic lysine, and their stacked geometries are preferred
over the T-shaped structures,114 whereas in the gas phase
the T-shaped structures are more stable. In many of the
proteins and protein-ligand complexes, both T-shaped and
displaced-stacked structures are equally observed for the
interactions of a positively charged histidine residue with
the Phe, Tyr, Trp, or Ade residues.115 It is not yet clearly
understood why stacked structures are much more common.
The interaction between benzene and pyridinium/imidazo-
lium was suggested as the cation-π interaction116 where the
large dispersion energy term was addressed. However,
ambiguity remains whether the interaction between a cationic
π-system and a neutral π system would be treated as either
conventional cation-π interaction or π-π interaction. Here,
we report that it needs to be described as a special type to
be denoted by the πcation-π interaction. In particular, the
interaction in π+-π(D) complexes (to be denoted simply as
the π+-π(D) interaction) cannot be described simply as the
cation-π interaction or the π-π interaction.117,118 This finding
is based on the comprehensive analysis of interaction energy
components for the Rg-π, CH-π, π-π(D), π-π(T), H-π(T),
π+-π(D), π+-π(T), H+-π(T), π+2-π(D), M+-π, and M+2-π
complexes.

2. Computational Methods

The geometries of complexes were optimized at the basis-
set-superposition-error (BSSE) corrected MP2 level of
theory using the aug-cc-pVDZ basis set (to be abbreviated
as aVDZ). The lowest energy structures were found from
the investigation of the energies of various structures with

respect to distances and angles (Supporting Information).
These were further calculated using the MP2/aug-cc-pVTZ
(to be abbreviated as aVTZ). The complete basis set (CBS)
limit values for the MP2 binding energies were evaluated
based on the extrapolation method exploiting that the basis
set error in the electron correlation energy is proportional to
N-3 for the aug-cc-pVNZ (or aVNZ) basis set.119 Though
most extrapolation methods would not be free from inherent
over/under-estimation problems, the extrapolation method
based on the theoretical understanding is found to be quite
reliable.120 The single point energies using the coupled cluster
theory with single, double, and perturbative triple excitations
(CCSD(T)) with the aVDZ basis set were also obtained on
the BSSE-corrected MP2/aVDZ geometries. Given that the
difference in binding energy between MP2/aVNZ and
CCSD(T)/aVNZ does not change significantly with increas-
ing basis set size, the CCSD(T)/CBS binding energies were
evaluated from the MP2/CBS ones using the difference
between CCSD(T)/aVDZ and MP2/aVDZ binding ener-
gies.120 Ab initio calculations were done using the Gaussian
suite of programs121 (for MP2 calculations) and Molpro
package122 (for CCSD(T) calculations). Symmetry adapted
perturbation theory (SAPT) calculations123,124 at the MP2/
6-31+G* or MP2/aVDZ† (where † means the diffuse basis
function of H was removed from the full aug-cc-pVDZ basis
set) level were carried out to evaluate the energy components.

The decomposition for the total interaction energy (Etot)
is made as follows:124,125

Etot )Ees +Eexch +Eind +Edisp + δint,resp
HF

)Ees+Eexch * +Eind* +Edisp* + δint,resp
HF (1)

where

Ees )Ees
(10) +Ees,resp

(12) (2)

Eind )Eind
(20) (3)

Edisp )Edisp
(20) (4)

Eexch )Eexch
(10) +Eexch

(11) +Eexch
(12) +Eexch,ind,resp

(20) +Eexch,disp
(20) (5)

Here, the first number 1 or 2 in parentheses in superscript
indicates the first or second order perturbation term; the
second number 0/1/2 in parentheses in superscript indicates
the zeroth/first/second order correction; Notation “resp” in
subscript indicates that a given component has been com-
puted including the coupled Hartree-Fock response for the
perturbed system. As in our earlier work16,43,57 and others,125

the modified decomposition for the interaction energy (Etot)
(in which the superscript “*” indicates the effective energy
component) is made as follows:

Eind* )Eind
(20) +Eexch,ind,resp

(20) + δint,resp
HF (6)

Edisp* )Edisp
(20) +Eexch,disp

(20) (7)

Eexch* )Eexch
(10) +Eexch

(11) +Eexch
(12) (8)

Although Eind, Edisp and Eexch are well defined, we need to
use Eind*, Edisp*, and Eexch* to properly classify different types
of π-interactions, i.e., for the purpose of better clustering
each characteristic type. To this end, the δint,resp

HF is added
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to Eind*, while it is not directly related to the induction but
still more correlated to the induction than other terms.

According to our previous investigations for π-π interac-
tions, we note that the base set dependency of Ees, Eind*, and
Eexch* is small, while that of Edisp* is substantial.16 Thus, the
realistic Edisp** for π-π interactions is obtained by adding
the difference between the CCSD(T)/CBS and SAPT(MP2/
6-31+G*) interaction energies to Edisp*.

43 However, we find
that Eind* needs to be corrected in the case of strongly cationic
types of π-interactions. Hence, we use the following general
formula which is applicable to all of the π-complexes to
calculate the respective realistic energy components with
respect to the Etot(CCSD(T)/CBS).

Edisp** )Edisp*(SAPT(MP2) ⁄ basis)+
κdisp(Etot(CCSD(T) ⁄ CBS)-Etot(SAPT(MP2) ⁄ basis)) (9)

Eind** )Eind*(SAPT(MP2) ⁄ basis)+
κind(Etot(CCSD(T) ⁄ CBS)-Etot(SAPT(MP2) ⁄ basis)) (10)

On the basis of energy values from SAPT(MP2)/small
basis and SAPT(MP2)/large basis, we calculate the ratios
of the energy component changes to the total energy changes
(denoted by κdisp and κind for the dispersion and induction
terms). There are insignificant changes in the electrostatic
and exchange energy components in all π-complexes (Table
S1 of the Supporting Information). In general, in the neutral
π complexes and the charged π+-π complexes, almost solely
the dispersion energy is underestimated, while in highly
cationic π complexes (i.e., multiply charged cations such as
Mg2+ and Ca2+ and highly ionizable cations such as Li+ and
Na+ at a very short distance from the benzene molecule)
the induction energies are underestimated. Hence, κdisp/κind

(κdisp + κind )1) ranges from 0 to 1 depending on the nature
of π-complexes. In Rg-π, CH-π, π-π, π-π, and π+-π
complexes, κdisp is 1, while κind is 0. For the Rg-π, CH-π,
π-π and π+-π, π+2-π and H-π complexes, only the dispersion
energy terms show significant changes; thus, κdisp ) 1 and
κind ) 0. For the NH4-benzene complex (H+-π complex),
κind is 0.5 and κdisp is 0.5. On the other hand, for the Me4N+

complex, which has three methyl groups interacting with the
π-system, κdisp is 1 and κind is 0, as in the CH-π system. The
κ values in the M+-π and M+2-π complexes depend on
the size of the cation. For the Cs+-π complex, κdisp) 1 and
κind ) 0; for the K+-π complex, κdisp) 0.6 and κind ) 0.4;
for the Na+-π complex, κdisp) 0.4 and κind ) 0.6; for the
Li+-π complex, κdisp) 0.1 and κind ) 0.9. For the Ca2+-
benzene complex, κdisp) 0.2 and κind ) 0.8; for the Mg2+-
benzene complex, κdisp) 0 and κind ) 1. The details of the
proper κ values are in the Supporting Information. All of
these estimations are used to obtain more realistic values
toward the CCSD(T)/CBS limit. However, it should be noted
that the corrections are not substantial, and so the raw data
without such corrections do not significantly change our
results.

We also investigated the ternary diagram analysis for
energy component percentages (fractions in %) with respect
to Eattr () Ees + Eind** + Edisp**), which are defined as fes )

Ees/Eattr, find ) Eind**/Eattr, fdisp ) Edisp**/Eattr, and fexch )
-Eexch*/Eattr. In addition, another set of energy component
percentages (fractions in %) is also investigated in consid-
eration of all the attractive and repulsive energy components;
f′es,ind ) (Ees + Eind**)/(Eattr - Eexch**), f′disp ) Edisp**/(Eattr -
Eexch*), and f′exch) -Eexch*/(Eattr - Eexch*). For the proper
classification of the π-interactions, the clustering technique
is very important, and so a few well-chosen characteristic
parameters (which could be represented by a linear or
nonlinear combination of well-known physical quantities)
should be sought out. Indeed, we note that energy component
percentages are also useful parameters.

3. Results and Discussion

A. Model Systems of Various Types of π-Interac-
tions. We have chosen various model systems for the Rg-π,
CH-π, π-π(D), π-π(T), H-π(T), π+-π(D), π+-π(T), H+-π(T),
π+2-π(D), M+-π, and M+2-π complexes (Figure 1), where
diverse molecular species interact with a benzene molecule
as simplified examples of these very complex systems. Since
the electron-rich benzene is not interacting with anions,
the electron-deficient π systems involving in the anion-π
interactions are not discussed here. To facilitate our discus-
sion, the π-interaction in the A-π(D/T) complexes will be
denoted simply as the A-π(D/T) interaction, where A is a
partner atom/molecule/ion. To model the Rg-π interaction,
Rg is chosen with He and Kr. CH4, C2H6, and C2H2 are
chosen for the CH-π interaction. For the π-π(D/T) interac-
tion, we consider benzene, toluene (Tol), and C6H5CN. For
the H-π(T) interaction, we consider the representative cases
of NH3, H2O, HCl, and CH3OH. Notation H+-π(T) is used
for the complex between a non-π organic cation and a neutral
π-molecule. For this system, NMe4

+, NH4
+, and NH4

+-w
are considered, where “w” denotes a water molecule. These
non-π organic cations, where the positive charge is more
concentrated on the hydrogen atom of the organic molecule
cation, are differentiated from the cases of neutral H-π(T)
interactions as seen with the complexes of a neutral π-system
with water, ammonia, alcohols, etc. For the M+-π interaction,
M is chosen with Cs, K, Na, and Li, while for the M+2-π
interaction, M is chosen with Ca and Mg. These well-studied
cation-π interactions need to be compared with the πcation-π
interactions which have been commonly observed but hardly
investigated. To this end, we have calculated various model
complexes involving with these interactions at the same level
of theory.

To understand the nature of the πcation-π interaction, we
carry out a detailed and systematic theoretical investigation
of diverse intermolecular model systems in which a benzene
ring forms the πcation-π interaction with various positively
charged π model systems (Figure 2). The first set of models
consists of singly charged moieties. Here, the interaction of
methyl imidazolium/N-methyl-guanidinium with benzene is
considered as the representative example for the interaction
between the positively charged His/Arg and the neutral
aromatic amino moiety (Phe, Tyr, or Trp). The second set
of models consists of doubly charged π-moieties. The third
set of models consists of the πcation-π complexes interacting
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with water molecules (w) or counteranions (Cl-/Br-) for the
investigation of the effect of solvent molecules and
counterions.

B. Structures and Solvent/Counterion Effects in
Terms of Total Interaction Energies. We discuss the MP2/
aVDZ BSSE-corrected geometries and the most reliable
CCSD(T)/CBS binding energies (to be denoted as -Etot) of
various π-complexes, because the MP2 energies are consis-
tent with the CCSD(T) energies (Table 1).

Figure 3 shows the MP2/aVDZ BSSE-corrected geom-
etries of the πcation-π complexes in the following order. The
methyl-guanidinium (ArgH+ moiety; a, at), methyl imida-
zolium (HisH+ moiety; b, bt,), dimethyl-imidazolium
(ImMe2

+; c, ct), and pyridinium (PyH+; d, dt) complexes have
both displaced-stacked (D) and T-shaped (T) forms, where
“(T)” is explicitly added to the complex name [e.g.,
ArgH+(T)], while “(D)” is often dropped for brevity’s sake
unless there is confusion. For the ArgH+/ HisH+/PyH+

complexes, the (N-H)+ group directly points toward the
benzene ring plane due to the presence of the positively
charged H-atom attached to the N atom, so the most
energetically favorable structure is T-shaped. For ImMe2

+,
the (C-H)+ directly points to the benzene ring plane. As
the H atom in the N-H group is replaced by the methyl
group, the 1-methyl pyridinium complex (PyMe+; e), 1,1′-
dimethyl- [4,4′] bipyridinium (BPMe2

+2; f), and 1,4-dimethyl
pyrazinium (PyMe2

+2; g) have no option to form T-shaped
geometries, so they have the displaced-stacked structures.
Furthermore, in the presence of polar solvents (water) or
counterions, even the ImMe2

+/PyH+ complexes change to
the displaced-stacked forms. Structures h,h′/i,i′ and ht/it show
two different displaced-stacked forms and one T-shaped form

of the ArgH+ moiety interacting with one/two water mol-
ecule(s), respectively. In structure h/i, the ArgH+ moiety is
significantly displaced from the benzene ring, and the water
molecule forms the H-π interaction. In structure h′/i′, the
ArgH+ moiety is stacked with the benzene ring, and the water
molecule(s) do not involve in the H-π interaction. In the case
of HisH+ complex, in the presence of two water molecules,
the T-shaped isomer is still more stable than, but nearly
isoenergetic to, the displaced-stacked one. Accordingly, both
T-shaped and displaced-stacked structures would be compat-
ible depending on the coordination environments. Structures
j/k and jt/kt in Figure 3 show displaced-stacked and T-shaped
isomers of the HisH+ moiety interacting with one/two water
molecule(s), respectively. Structures l and m show displaced-
stacked forms of the pyridinium complexes coordinated by
a water molecule and a bromide ion, respectively. Structure
n displays the imidazolium complex coordinated by a
chloride ion. For these π-complexes, we find the following
trend:

The typical binding energies of the π+-π(D) structures
(∼8-11 kcal/mol) and the π+-π(T) structures (∼9-14 kcal/
mol) are much larger than the typical H-bonding energy (∼5
kcal/mol for the water dimer),126 CH-π (∼1.5-3 kcal/mol)
and H-π binding energy (∼2-4 kcal/mol), but smaller than
the typical cation-π (H+-π and M+-π) binding energy
(∼9-23 kcal/mol). In the cases of π+-π complexes, the most
stable structure in the presence of one or two water molecules
is often topologically different from that in the gas phase.
However, the conventional cation-π complexes (non-π
organic H+-π or metallic M+-π complexes) retain their
structural forms even in the presence of one or two water
molecules coordinated to the cationic species.

Figure 1. Schematic of various types of π-interaction (See Table 1 for the details of notation).
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The T-shaped forms of ArgH+(T), HisH+(T), and PyH+(T)
(-Etot: 14-15 kcal/mol) are ∼5-6 kcal/mol more stable than
the corresponding displaced-stacked forms. ImMe2

+(T) is ∼1
kcal/mol more stable than the displaced-stacked one. How-

ever, other π+-π complex structures favor the displaced-
stacked forms. The binding energy is ∼8-11 kcal/mol for
the π+-π interaction of the singly charged systems and ∼22
kcal/mol for the π+2-π interaction of the doubly charged

Table 1. Geometrical Parameters (BSSE-corrected MP2/aVDZ) and Interaction Energies (MP2/CBS and CCSD(T)/CBS) of
the πcation Model Systems Interacting with a Benzene Molecule, Which Are Compared with the Rg-π, CH-π, H-π, π-π, and
Cation-π Interactions Involving with a Benzene Moleculea

MP2 CCSD(T)

type complex θ rv (rd) aVDZ aVTZ CBS aVDZ CBS

Rg-π He 3.46 (0.00) -0.17 -0.21 -0.23 -0.16 -0.23
Kr 3.64 (0.00) -1.43 -1.84 -2.02 -0.87 -1.47

CH-π(T) CH4 6.80 (0.00) -1.52 -1.68 -1.74 -1.21 -1.43
C2H6 -0.9 3.66 (0.26) -2.42 -2.69 -2.81 -1.85 -2.23
C2H2 90 3.54 (0.00) -3.04 -3.32 -3.45 -2.44 -2.85

H-π(T) NH3 3.60 (0.30) -2.24 -2.48 -2.57 -1.93 -2.26
H2O 3.45 (0.42) -2.99 -3.27 -3.39 -2.74 -3.14
HCl 3.67(0.00) -4.21 -4.61 -4.77 -3.37 -3.93
CH3OH 3.37(0.37) -4.06 -4.47 -4.64 -2.74 -3.14

π-π(T) C6H6 (T) 90 4.93 (0.74) -3.32 -3.59 -3.72 -2.46 -2.83
Tol(T) 90 4.84 (0.95) -3.84 -4.13 -4.27 -2.88 -3.31
C6H5CN(T) 90 4.91 (0.09) -5.30 -5.73 -5.96 -4.05 -4.72

π-π(D) C6H6 0 3.41 (1.55) -4.29 -4.71 -4.93 -2.06 -2.61
Tol 1.8 3.38 (1.57) -5.42 -5.82 -6.03 -3.40 -4.00
C6H5CN 4.2 3.42 (1.37) -6.49 -7.04 -7.34 -3.50 -4.35

π+-π(D) ArgH+ 0.0 3.46 (1.32) -10.30 -9.68 -9.42 -9.32 -8.44
HisH+ 0.0 3.36 (1.11) -10.11 -10.72 -10.98 -8.05 -8.92
ImMe2

+ 10.2 3.36 (1.33) -11.99 -12.71 -13.01 -9.98 -11.01
PyH+ 6.5 3.36 (1.01) -10.93 -11.48 -11.71 -8.12 -8.91
PyMe+ 7.6 3.36 (1.20) -11.39 -12.00 -12.25 -8.49 -9.35
ArgH+-w -1.2 3.22 (2.80) -9.46 -10.00 -10.23 -8.34 -9.11
ArgH+-w’ 12.5 3.45 (1.23) -9.25 -9.66 -9.84 -8.14 -8.73
ArgH+-w2 -2.6 3.17 (2.84) -8.79 -9.36 -9.60 -7.72 -8.53
ArgH+-w2′ 10.5 3.44 (1.26) -8.23 -8.66 -8.85 -7.15 -7.77
HisH+-w 4.0 3.33 (0.16) -9.65 -10.18 -10.40 -7.61 -8.36
HisH+-w2 1.2 3.31 (0.16) -8.96 -9.50 -9.73 -6.90 -7.66
ImMe2

+-Cl- 8.8 3.29 (1.44) -10.64 -11.39 -11.71 -8.02 -9.09
PyH+-w 6.9 3.37 (1.47) -10.24 -10.83 -11.07 -7.93 -8.76
PyH-Br- 8.6 3.37 (1.31) -9.03 -9.64 -9.90 -7.97 -8.85

π+-π(T) ArgH+(T) 90 3.96 (0.46) -14.35 -15.00 -15.27 -13.04 -13.96
HisH+(T) 73.6 4.14 (0.25) -14.40 -15.11 -15.40 -12.67 -13.68
ImMe2

+ (T) 86.7 4.52 (0.10) -11.90 -12.55 -12.83 -11.10 -12.03
PyH+(T) 90 4.38 (0.00) -15.82 -16.60 -16.93 -14.03 -15.14
ArgH+-w(T) 89.8 3.98 (0.55) -12.91 -13.54 -13.80 -11.69 -12.58
ArgH+-w2(T) 89.8 4.01 (0.56) -8.72 -9.35 -9.62 -7.61 -8.50
HisH+-w(T) 74.7 4.18 (0.25) -13.15 -13.81 -14.09 -11.56 -12.49
HisH+-w2(T) 76.9 4.21 (0.13) -9.63 -10.42 -10.75 -8.16 -9.28

H+-π(T) Me4N+ 4.28b (0.00) -9.86 -10.28 -10.46 -8.89 -9.49
NH4

+ 2.94 (0.06) -18.80 -20.05 -20.58 -19.64 -21.41
NH4

+-w 2.94 (0.07) -15.14 -15.88 -16.19 -14.25 -15.29
π++-π(D) PyMe2

+2 8.8 3.16 (1.13) -25.31 -26.27 -26.68 -20.85 -22.23
BPMe2

+2 6.7 3.32 (1.13) -17.48 -19.33 -20.11 -16c

M+-π Cs+ 3.24 (0.00) -15.52 -14.81 -14.51 -14.09 -13.08
>K+ 2.90 (0.00) -17.12 -18.74 -19.42 -16.47 -18.77
Na+ 2.48 (0.00) -22.33 -22.80 -23.00 -22.28 -22.95
Li+ 1.92 (0.00) -35.48 -37.37 -38.16 -35.44 -38.13
K+-w 2.94 (0.00) -15.10 -16.32 -16.83 -14.50 -16.22
Na+-w 2.52 (0.00) -22.28 -22.64 -22.79 -19.19 -19.70
Li+-w 1.98 (0.00) -28.77 -30.16 -30.74 -28.63 -30.30

M++-π Ca2+ 2.39 (0.00) -77.85 -81.43 -82.93 -76.32 -81.40
Mg2+ 1.98 (0.00) -111.94 -115.24 -116.63 -112.16 -116.85
Ca2+-w 2.44 (0.00) -66.28 -68.82 -69.90 -64.93 -68.55
Mg2+-w 2.02 (0.00) -94.30 -96.57 -97.53 -94.48 -97.71

a θ: angle (in degrees) tilted from the parallel stacking, rv: vertical stacking distance for ring systems or distance from the heavy atom of
non-π systems (or the middle carbon atom in the case of ArgH+) to the benzene ring plane, rd: off-center displacement. Distances in Å;
energies in kcal/mol. CCSD(T)/CBS Etot’s are obtained by applying the correction term (the difference of the BSSE-corrected interaction
energies between MP2/aVDZ and CCSD(T)/aVDZ) to the BSSE-corrected MP2/CBS interaction energies (based on the extrapolation
scheme utilizing the basis set error in the electron correlation energy proportional to N-3 for the aug-cc-pVNZ basis set (reference 34)).
b Distance between the nitrogen atom and the benzene centroid. The distance from the carbon atom to the benzene ring plane is 3.38 Å.
c Roughly estimated from the MP2/CBS estimated interaction energy (-20.11 kcal/mol) [For PyMe2

+2, the CCSD(T)/CBS energies is ∼4.5
kcal/mol less than the MP2/CBS values].

Comprehensive Energy Analysis for π-Interaction J. Chem. Theory Comput., Vol. 5, No. 3, 2009 519



systems in a single ring. Doubly charged BPMe2
+2 with a

positive charge in each of the two rings has the binding
energy of ∼16 kcal/mol, which is ∼7 kcal/mol more than
the binding energy of PyMe+ and ∼6 kcal/mol less than that
of PyMe2

+2 (doubly charged on a single ring).
For the π+-π(D) structures, the vertical distance between

two stacked rings (rv) is 3.3-3.5 Å for the singly charged
systems (except for ArgH+-w/w2(D) which has slightly
shorter distances of 3.2 Å due to the large off-center
displacement rd), ∼3.3 Å for the doubly charged system on
two rings, and ∼3.2 Å for the doubly charged system on a
single ring, which are shorter than the distance (3.41 Å)
observed for the neutral benzene-benzene dimer in the
displaced-stacked form. It would be noted that the ArgH+

moiety is a weakly π-conjugated system as compared with
aromatic ring systems (such as HisH+, PyH+, and ImMe2

+)
discussed here, so the binding energies of the ArgH+(-w/
w2) system are slightly smaller than aromatic ring systems.

The solvent and counterion effects play an important role
in determining the structures of the π+-π complexes. For
the methyl-guanidium, in the absence of water, the T-shaped
ArgH+ moiety is 4.5 kcal/mol more stable than the displaced-
stacked one. For the complex with one water molecule, the
displaced-stacked ArgH+-w(h) is about 0.5 kcal/mol more
stable than the displaced-stacked ArgH+-w(h′), but still 3.5
kcal/mol less stable than the T-shaped ArgH+-w(T)(ht). For
the complex with two water molecules, the displaced-stacked
ArgH+-w2(i) is about 0.8 kcal/mol more stable than the
displaced-stacked ArgH+-w2(i′), and is isoenergetic to or
slightly more stable than the T-shaped ArgH+-w2(T)(it). For
the protonated methyl-imidazolium, the T-shaped isomer in
the presence of one/two water molecules (HisH+-w(T)(jt)/
HisH+-w2(T)(kt)) is ∼4.1/1.7 kcal/mol more stable than the
displaced-stacked isomer [HisH+-w(j)/ HisH+-w2(k)].
Either in the presence of both a counteranion (such as an
acetate group) and a water molecule or in the presence of
more than two coordinating species (water or counteranions
or carbonyl oxygen of amide bond, etc.), the T-shaped
isomers of ArgH+/HisH+ would eventually be isoenergetic
to or slightly less stable than the displaced-stacked isomers.

This result is in good agreement with the previous analysis
of proteins and protein-ligand complexes for the interactions
of neutral aromatic amino acids with positively charged
π-cloud of protonated arginine/histidine, where the displaced-
stacked structure is preferred to the T-shaped structure or
otherwise both structures are equally observable.111-114

Furthermore, when the T-shaped structures of the PyH+/
ImMe2

+-benzene complexes are optimized in the presence
of one water molecule or a counterion, they change to the
displaced-stacked structures. Thus, in the presence of polar
solvent molecules and counteranions in the vicinity of
positively charged π-systems, the T-shaped forms are no
longer stable and so the displaced-stacked forms are favored
because the polar solvent molecules and counterions interact
with the charged moiety of the charged π-ring.

The Cambridge structural data analysis (CSD version 5.29,
November 2007)127,128 for the interaction between pyri-
dinium (including substituted and fused ring systems) and
benzene (including substituted and fused ring systems) within
the centroid-to-centroid intramolecular distance of 5 Å shows
that ∼90% of the complexes are found to have displaced-
stacked structural forms among the total 701 hits. The
hydrogen atom in (N-H)+ is in general coordinated to
solvent molecules, counteranions, or other partner molecules.
We have not found a single example where the hydrogen
atom of (N-H)+ directly points to the ring plane of the
benzene ring. About 10% of the complexes are found to have
angled T-shape structural forms where the hydrogen atom(s)
of the C atom(s) of the pyridinium is pointing toward the
benzene ring plane. However, the hydrogen atom in (N-H)+

forms a strong hydrogen bond with a solvent molecule, a
counteranion, or other partner molecules. Thus, our results
are in good agreement with what are observed in the crystal
structures.

C. Energy Components. Table 2 lists Etot and SAPT
energy components of various π-model systems, and these
average values for various types of π-interactions are listed
in Table 3. Figure 4a shows the 3-dimensional (3D) plot of
Etot as the function of Eexch* and Eattr and Figure 4b shows
the 3D plot of Etot as the function of Ees* and Eind**. Figure

Figure 2. Selected positively charged π-moieties and the associated solvent molecules/counteranions. (a) N-methyl-guanidinium
(representing the side chain of the protonated arginine), (b) methyl imidazolium (representing the side chain of the protonated
histidine), (c) dimethyl imidazolium, (d) pyridinium, (e) 1-methyl pyridinium, (f) 1,1′-dimethyl-[4,4′] bipyridinium, (g) 1,4-dimethyl
pyrazinium, (h,i) N-methyl-guanidinium with one or two water molecules, (j,k) methyl imidazolium with one or two water molecules,
(l) dimethyl imidazolium with a chloride anion, and (m,n) pyridinium with one water molecule or a bromide anion.
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4c plots the correlation of Etot with (i) Ees*, (ii) Eind**, (iii)
Ees,ind (Ees,ind ) Ees* + Eind**), and (iv) Edisp,exch (Edisp,exch )
Edisp** + Eexch*). The Ees* (square of correlation factor, R2 )
0.921), Eind** (R2 ) 0.993), Ees,ind (R2 ) 0.997), and Edisp,exch

(R2 ) 0.927) show correlations with Etot, while Edisp** and
Eexch* do not show good correlations with Etot. Hence, Etot

shows a good correlation with Eind** and in particular, Ees,ind.
In the Etot vs Ees* regression, the quadratic polynomial
regression of Ees* with respect to Etot drastically improves
the correlation (R2 ) 0.980 for Ees*). This indicates the
importance of the square terms of Ees*, where Ees* is related
to site charges, which implicitly reflects the induction term
proportional to the square of the electric field correlated to
the site charges. Hence, the Etot vs Ees,ind linear regression
results in an excellent correlation (R2 ) 0.997). This indicates
that the difference in Etot between different types of
π-interaction can be reasonably explained by Ees,ind. However,
it does not mean that Ees,ind can explain small differences
between same types of π-interaction such as π-π-(D), since
Ees,ind alone cannot properly distinguish small energy differ-
ence in Etot due to substitution in aromatic ring.43 Edisp** and
Eexch* independently show very poor correlations with Etot

(Figure 4c-iv), while Edisp,exch shows an anticorrelation with
Etot. Overall, the Ees* component shares a large portion of
Etot, but its variation depending on the types of π-interaction
is not substantial. However, the Eind** component changes

drastically depending on the types of π-interaction. In this
regard, Eind** is the crucial energy component to differentiate
different types of π-interaction, while other components also
play significant roles in differentiating them. The detailed
analysis of Tables 2 and 3 as well as Figure 4 is given in
the Supporting Information. Here, we discuss only the main
essence of the findings in the next paragraphs.

In going from the Rg-π complexes to the M+2-π
complexes, the increasing order in the values of -Ees* or
-Eind** is not correlated with the increasing/decreasing
order in the values of -Edisp** or Eexch*. A general
observation from the above analysis is that -Ees* and
-Eind** are the smallest in the Rg-π complexes, followed
by the CH-π, π-π, and H-π complexes, while they are
large in the π+2-π(D) and M+2-π complexes. -Ees* is
larger than -Eind* in all the M+2-π complexes with the
exception of the Li+ and Li+-w complexes. For the M+-π
interaction, there is a large variation in -Eind** (5-30 kcal/
mol) because the Cs+/Li+ ion is at a very long/short
distance from the benzene molecule. In all of the charged
π-complexes, the electrostatic energy is important, and
so is the induction energy except for the π+-π(D)
complexes.

The π+-π(D), π-π(D), and π+2-π(D) complexes have large
dispersion energy (Edisp**, ∼9-13 kcal/mol), while the M+-π
complexes have small dispersion energy (∼0.6-6 kcal/mol).

Figure 3. Calculated geometries (BSSE-corrected MP2/aug-cc-pVDZ) of model complex systems whose positively charged
aromatic ring interacts with a neutral aromatic benzene ring: displaced stacked (D) and T-shaped (T) forms of N-methyl-guanidinium
complexes (ArgH+(D), ArgH+(T)) (at,a); displaced stacked and T-shaped forms of the methyl imidazolium complexes (HisH+(D),
HisH+(T)) (bt,b); dimethyl imidazolium complex in displaced-stacked and T-shape forms (ImMe2

+(D), ImMe2
+(T)) (ct,c); displaced

stacked and T-shaped forms of the pyridinium complexes (PyH+(D), PyH+(T)) (dt,d); 1-methyl pyridinium complex (PyMe+) (e);
the 1,1′-dimethyl-[4,4′] bipyridinium complex (BPMe2

+2) (f); 1,4-dimethyl pyrazinium complex (PyMe2
+2) (g); N-methyl-guanidinium

complexes coordinated by one (w) and two water (w2) molecules in two displaced-stacked and T-shaped forms (h, h′, ht and i,
i′, it,); methyl imidazolium complexes coordinated by one (w) and two water (w2) molecules in displaced-stacked and T-shaped
forms (j, jt and k, kt); dimethyl imidazolium complex coordinated by chloride (ImMe2

+-Cl-) (l); and pyridinium complexes coordinated
by water and bromide (PyH+-w, PyH+-Br-) (m, n). In BPMe2

+2, one ring is twisted by ∼37 ° with respect to the other ring interacting
with the neutral benzene ring. The other structure that both rings are planar is ∼2 kcal/mol less stable. Structures h′ and i′ are
slightly less stable than structures h and i, respectively.
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The Rg-π, CH-π(T), and H-π(T) complexes have small
exchange energy, while the π+2-π(D) and M+2-π complexes
have very large exchange energy. Given that the dispersion
energy depends on the size of a partner molecule or the total
number of electrons or the sum of atomic numbers, the values
of -Edisp** of the H-π(T) interactions composed of only small

species in this study are much smaller than those of other
types of π-interaction. If similar sizes are considered, then
the CH-π(T) and H-π(T) interactions would be more or less
equivalent in -Edisp** to the π-π(T) interaction.

In the Rg-π complex (Rg ) He, Kr), -Edisp** (0.32-2.7
kcal/mol) is partly canceled by Eexch*, gaining only a small

Table 2. Interaction Energies (Etot: CCSD(T)/CBS), Energy Components (Ees*, Eind**, Edisp**, Eexch*; Eattr ) Ees* + Eind** +
Edisp**) at the SAPT(MP2)/6-31+G* level or a VDZ+ level, and Fractional Values of Energy Components Reported in
Percentages [fes ) Ees*/Eattr, find ) Eind**/Eattr, fdisp** ) Edisp**/Eattr, fexch ) -Eexch*/Eattr, f′es,ind) (Ees* + Eind**)/(Eattr - Eexch*), f′disp**

) Edisp*/(Eattr - Eexch*), f′exch* ) -Eexch*/(Eattr - Eexch*)] of the π-Model Systems Interacting with a Benzene Moleculea

type complex Etot Ees* Eind** Edisp** Eexch* fes find fdisp fexch f ′es,ind f′disp f′exch

Rg-π He -0.23 -0.04 -0.02 -0.32 0.15 9.9 5.9 84.1 40.5 11.3 59.9 28.8
Kr -1.47 -0.91 -0.17 -2.67 2.28 24.2 4.4 71.3 60.8 17.8 44.3 37.8

CH-π(T) CH4 -1.43 -0.91 -0.25 -2.46 2.19 25.1 6.9 68.0 60.5 19.9 42.4 37.7
C2H6 -2.23 -1.53 -0.39 -4.11 3.80 25.3 6.5 68.2 63.0 19.5 41.8 38.7
C2H2 -2.85 -2.23 -0.83 -3.10 3.32 36.2 13.5 50.3 53.8 32.3 32.7 35.0

H-π(T) NH3 -2.26 -1.78 -0.43 -2.57 2.52 37.3 8.9 53.8 52.6 30.3 35.3 34.5
H2O -3.34 -2.73 -0.79 -2.81 2.99 43.2 12.5 44.4 47.3 37.8 30.1 32.1
HCl -3.93 -3.41 -1.33 -3.73 4.53 40.3 15.7 44.0 53.5 36.5 28.7 34.9
CH3OH -4.11 -3.40 -1.06 -4.65 5.00 37.3 11.7 51.0 54.9 31.6 32.9 35.4

π -π(T) C6H6 (T) -2.83 -2.11 -0.53 -4.17 3.98 31.0 7.8 61.2 58.5 24.5 38.6 36.9
Tol(T) -3.31 -2.35 -0.59 -5.08 4.71 29.3 7.4 63.3 58.7 23.1 39.9 37.0
C6H5CN(T) -4.72 -4.24 -1.28 -6.10 6.91 36.5 11.0 52.5 59.5 29.8 32.9 37.3

π-π(D) C6H6 -2.61 -2.58 -0.84 -7.57 8.38 23.5 7.6 68.9 76.3 17.6 39.1 43.3
Tol -4.00 -3.26 -0.98 -9.66 9.90 23.5 7.0 69.5 71.2 17.8 40.6 41.6
C6H5CN -4.35 -5.02 -1.08 -9.61 11.36 32.0 6.9 61.2 72.3 22.5 35.5 42.0

π+-π(D) ArgH+ -8.44 -5.99 -2.38 - 7.49 7.42 37.8 15.0 47.2 46.8 36.0 32.2 31.9
HisH+ -8.92 -7.36 -2.89 -8.86 10.86 38.5 15.1 46.4 56.8 34.2 29.6 36.2
ImMe2

+ -11.01 -8.61 -3.19 -10.57 11.36 38.5 14.2 47.3 50.8 35.0 31.3 33.7
PyH+ -8.91 -8.68 -3.76 -9.09 12.61 40.3 17.5 42.2 58.6 36.4 26.6 36.9
PyMe+ -9.35 -8.64 -3.57 -10.02 12.87 38.9 16.1 45.1 57.9 34.8 28.6 36.7
ArgH+-w -9.11 -7.89 -3.90 -7.10 9.78 41.8 20.6 37.6 51.8 41.1 24.8 34.1
ArgH+-w′ -8.73 -7.94 -3.40 -7.31 9.91 42.6 18.2 39.2 53.1 39.7 25.6 34.7
ArgH+-w2 -8.53 -7.45 -3.45 -7.26 9.64 41.0 19.0 40.0 53.1 39.2 26.1 34.7
ArgH+-w2′ -7.77 -7.18 -2.76 -7.36 9.53 41.5 16.0 42.5 55.1 37.0 27.4 35.5
HisH+-w -8.36 -7.38 -2.80 -9.04 10.87 38.4 14.6 47.1 56.5 33.8 30.1 36.1
HisH+-w2 -7.66 -6.88 -2.43 -9.15 10.79 37.3 13.1 49.6 58.5 31.8 31.3 36.9
ImMe2

+-Cl- -9.09 -11.08 -3.43 - 11.53 16.94 42.6 13.2 44.3 65.1 33.8 26.8 39.4
PyH+-w -8.76 -7.86 -3.02 -9.28 11.41 39.0 15.0 46.0 56.6 34.5 29.4 36.1
PyH-Br- -8.85 -9.17 -2.47 -11.94 14.73 38.9 10.5 50.6 62.5 30.4 31.2 38.5

π+-π(T) ArgH+(T) -13.96 -10.88 -7.40 - 7.61 11.92 42.0 28.6 29.4 46.0 48.4 20.1 31.5
HisH+(T) -13.68 -10.22 -7.22 -7.86 11.62 40.4 28.5 31.1 45.9 47.2 21.3 31.5
ImMe2

+ (T) -12.03 -8.34 -5.06 -7.79 9.16 39.3 23.9 36.8 43.2 44.1 25.7 30.2
PyH+(T) -15.14 -10.98 -7.74 -8.06 11.64 41.0 28.9 30.1 43.5 48.7 21.0 30.3
ArgH+-w(T) -12.58 -9.86 -6.16 -7.47 10.90 42.0 26.2 31.8 46.4 46.6 21.7 31.7
ArgH+-w2(T) -8.50 -9.18 -5.39 -4.22 10.30 48.8 28.7 22.5 54.8 50.1 14.5 35.4
HisH+-w(T) -12.49 -9.39 -6.17 -7.59 10.66 40.6 26.6 32.8 46.0 46.0 22.4 31.5
HisH+-w2(T) -9.28 -8.94 -5.61 -4.76 10.02 46.3 29.0 24.6 51.9 49.6 16.2 34.2

H+-π(T) Me4N+ -9.49 -7.33 - 4.04 -6.37 8.25 41.3 22.8 35.9 46.5 43.7 24.5 31.7
NH4

+ -21.20 -13.27 -14.08 -6.85 13.00 38.8 41.2 20.0 38.0 57.9 14.5 27.5
NH4

+-w -15.29 -12.00 -10.57 -5.97 13.24 42.0 37.0 20.9 46.4 54.0 14.3 31.7
π++-π(D) PyMe2

+2 -22.23 -17.56 -14.16 -13.15 22.64 39.1 31.6 29.3 50.5 47.0 19.5 33.5
M+-π Cs+ -13.08 -12.97 -5.62 - 5.63 11.13 53.5 23.2 23.3 46.0 52.6 15.9 31.5

K+ -18.77 -13.59 -9.98 -3.57 8.36 50.1 36.8 13.1 30.8 66.4 10.1 23.6
Na+ -22.95 -15.64 -13.84 -0.59 6.81 52.0 46.0 2.0 22.7 79.9 1.6 18.5
Li+ -38.13 -17.84 -29.97 -0.59 10.28 36.9 61.9 1.2 21.2 81.5 1.0 17.5
K+-w -16.22 -12.28 -8.18 -3.27 7.51 51.8 34.5 13.8 31.6 65.5 10.5 24.0
Na+-w -19.70 -13.93 -11.19 -0.76 6.00 53.8 43.2 2.9 23.2 78.8 2.4 18.8
Li+-w1 -30.60 -15.29 -22.23 -1.26 8.18 39.4 57.3 3.3 21.1 79.9 2.7 17.4

M++-π Ca2+ -81.40 -36.17 -69.62 - 6.28 30.67 32.3 62.1 5.6 27.4 74.1 4.4 21.5
Mg2+ -116.85 -40.11 -102.82 -0.39 26.47 28.0 71.7 0.3 18.5 84.2 0.2 15.6
Ca2+-w -68.55 -33.26 -57.35 -5.24 27.29 34.7 59.8 5.5 28.5 73.6 4.3 22.2
Mg2+-w -97.71 -36.32 -84.20 -1.22 24.03 29.8 69.2 1.0 19.7 82.7 0.8 16.5

a SAPT(MP2)/6-31+G* is used for the energy component calculations of π-π(D), π-π(T), π+-π(D), π+-π(T), π+2-π(D), M+-π, and M+2-π
complexes, while SAPT(MP2)/aVDZ’ is used for Rg-π, CH-π, H-π(T), and H+-π(T) complexes, as the total energies were highly
underestimated for these complexes at the SAPT(MP2)/6-31+G* level. The Ees*, Eind**, Edisp**, and Eexch* values at the SAPT(MP2)/aVDZ†

level are, respectively: -10.22, -8.18, -8.57, 11.83 for PyH+(T); -8.44, -4.00, -9.44, 13.00 for PyH+(D); -8.34, -3.74, -10.31, and
13.07 for PyMe+. These values are consistent with the SAPT(MP2)/6-31+G* results, as in the table. While the base set dependency of Ees*

and Eexch* is not significant, Edisp* and Eind* depend on the basis set. Thus, the realistic Edisp** and Eind** are obtained as described in
computational details and Supporting Information.
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amount of binding energy. However, as the electron density
in the space between benzene and He/Kr is redistributed
outside the benzene-Kr complex (while it is slightly more
distributed outside benzene), there is small -Ees* due to small
charge transfer from the benzene ring to the Rg (natural bond
orbital charge of -0.003 au for Kr at the CCSDT(T)/aVDZ
level) as well as small polarization-driven -Eind**, resulting
in a substantial binding energy contribution in the small total
binding energy. In the CH-π complexes, -Edisp** is larger
than -Ees*, and -Eind** is relatively small.

The π-π(D) complexes have larger -Edisp** (∼8-10 kcal/
mol) than the π-π(T) complexes (∼4-6 kcal/mol), which
are larger than corresponding -Ees (∼2-5 kcal/mol) and
-Eind* (∼0.5-1 kcal/mol). However, the H-π(T) complexes
tend to have smaller -Edisp** (2.5-4.6 kcal/mol) than the
π-π(T) complexes in this study. However, given that the
partner molecules in the H-π(T) complexes are smaller than
those in π-π(T) complexes, there would be no significant
differences in Edisp** between H-π(T) and π-π(T) complexes.

In the π+-π(D) complexes, -Edisp** (∼7-12 kcal/mol) is
only slightly larger than -Ees*, while -Eind** is small and
Eexch* is relatively large. These are contrasted to the π+-π(T)
complexes, where -Ees* (∼8-11 kcal/mol) is larger than
-Edisp**. In this regard, the H+-π(T) complexes are similar
to those of π+-π(T) complexes. The -Ees* of small organic
cations (NH4

+ and NH4
+-w) are nearly similar to -Eind**,

while for bigger organic cations (Me4N+) -Ees* is larger than
-Eind**. In the π+-π(T)/ H+-π(T) complexes, -Eexch* and
-Eind** are much larger than those in the π-π(D), π-π(T)
and π+-π(D) complexes. Alternatively, in the π++-π(D)
complex of PyMe2

+2, the -Ees* (18 kcal/mol) is larger than
-Eind** and -Edisp**, but smaller than Eexch*.

In the M+-π complexes, -Ees* (∼12-16 kcal/mol) is
larger than -Eind** excluding the Li+ and Li+-w complexes
where -Ees* is smaller than -Eind**. These are contrasted to
the M++-π complexes where -Eind** (∼57-102 kcal/mol)
is larger than -Ees*. In both M+-π and M+2-π complexes,
-Edisp** is much smaller than Eexch*. For the M+2-π com-
plexes, the magnitude of the sum of the attractive energy
components (-Eattr) is much larger than Eexch*, hence the
binding energy is the largest among the π-complexes studied
here.

One may note at this point that the π-π interaction has
large dispersion energy, the cation-π interaction has large

electrostatic and induction energies, and the π+-π interaction
has large dispersion and electrostatic energies. Since the total
energies vary significantly depending on the types of
π-complexes, the degree of contribution of these energy
components to the total binding energy is another way to
analyze different types of π-complexes. Thus, to more clearly
understand the similarities and differences between these
important π interactions, we look into the percentage
contributions from each of the attractive and repulsive energy
components using the ternary diagram analysis.

D. Ternary Diagram Analysis. Since each π-interaction
is represented by five components (Etot, Ees, Eind*, Edisp**, and
Eexch*), a clustering scheme in multidimensional spaces is
utilized to differentiate different types of π-interaction. Due
to the complexity involved with the multidimensional
clustering techniques, it would be useful to exploit three
component ternary diagrams which are popular for the
interpretation of the phase transition in physical chemistry.129

Figure 5 shows some of selected ternary diagrams drawn
usingthecombinationofvariouslyselectedenergycomponents.

In Figure 5a, the ternary diagram using the attractive
energy components (Ees*, Eind**, Edisp**) shows the percentage
of Ees*/Eind**/Edisp**, i.e., fes/find/fdisp (in %) in the total attrac-
tive interaction energy for different types of π-interaction.
The average percentages of fes/find/fdisp are ∼17/5/78% for
Rg-π, ∼26/7/67% for π-π(D), ∼32/9/59% for π-π(T), ∼29/
9/62% for CH-π, ∼40/12/48% for H-π, ∼40/16/44% for π+-
π(D), ∼43/27/30% for π+-π(T), ∼39/31/30% for π+2-π(D),
∼41/34/25% for H+-π(T), ∼48/43/9% for M+-π, and ∼31/
66/3% for M+2-π (Table 3), which are listed in the increasing
order of the average induction energy percentage. The main
points that could be drawn from figure 5a (Table 2) are
highlighted below (the detailed analysis is in Supporting
Information).

The variation of fes between different types of π-interaction
is rather small as compared to the variations of find. Whereas,
the fdisp and fexch are almost in the reverse order of find. The
dispersion energy is the highly dominant component in the
Rg-π (∼78%), CH-π (∼62%), and π-π(D) (∼67%) com-
plexes and the dominant component (∼59%) in the π-π(T)
complexes, whereas all their induction components are very
small (5-9%). The fexch increases with increasing contacting
area between benzene and the partner molecule and with
increasing charge density in the contacting area. More

Table 3. Average Interaction Energies (Etot: CCSD(T)/CBS), Energy Components (SAPT(MP2)/6-31+G*), and Energy
Component Percentages for the Various Types of π-Interactions, Which Are Ordered in Terms of Increasing Induction
Energy Component Percentage find

Etot Ees* Eind** Edisp** Eexch* fes find fdisp f′es,ind f′disp f′exch

Rg-π -0.8 -0.5 -0.1 -1.5 1.2 17.1 5.2 77.7 14.6 52.1 33.3
π-π (D) -3.7 -3.6 -1.0 -8.9 9.9 26.3 7.2 66.5 19.3 38.4 42.3
π -π(T) -3.6 -2.9 -0.8 -5.1 5.2 32.3 8.7 59.0 25.8 37.2 37.1
CH-π(T) -2.2 -1.6 -0.5 -3.2 3.1 28.9 9.0 62.1 23.9 39.0 37.1
H-π (T) -3.4 -2.8 -0.9 -3.4 3.8 39.5 12.2 48.3 34.0 31.7 34.2
π+-π (D) -8.8 -8.0 -3.1 -9.0 11.3 39.8 15.6 44.6 35.5 28.6 35.8
π+-π(T) -12.2 -9.7 -6.3 -6.9 10.8 42.6 27.6 29.9 47.6 20.4 32.0
π++-π(D) -22.2 -17.6 -14.2 -13.1 22.6 39.1 31.6 29.3 47.0 19.5 33.5
H+-π(T) -15.3 -10.9 -9.6 -6.4 11.5 40.7 33.7 25.6 51.9 17.8 30.3
M+-π -22.8 -14.5 -14.4 -2.2 8.3 48.2 43.3 8.5 72.1 6.3 21.6
M++-π -91.1 -36.5 -78.5 -3.3 27.1 31.2 65.7 3.1 78.6 2.4 18.9
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positively charged species have smaller fexch, while the
displaced stacking complexes such as π-π(D), π+-π(D), and
π+2-π(D) have larger fexch than the corresponding T-shaped
complexes.

In the π+-π(D) complexes, the dispersion energy is still
a major energy component (∼44%) and the contribution
from the electrostatic energy is comparable (∼40%), while
the induction energy is still small (∼16%). Meanwhile,

in the π+-π(T) complexes, the dispersion energy is reduced
to ∼30%, but the induction increases (∼28%), while the
electrostatic energy is the major component (∼43%).
These complexes are quite similar to the H+-π(T) com-
plexes, where the dispersion energy is ∼26%, the induc-
tion energy is ∼34%, and the electrostatic energy is
∼41%. The π++-π(D) complexes have ∼29% contribution
from the dispersion energy which is smaller than the

Figure 4. 3D-plots of (a) -Etot as the function of Eexch* and -Eattr(Eattr ) Ees* + Eind** + Edisp**) and (b) -Etot* as the function
of -Eind** and -Ees* for the Rg-π, CH-π(T), π-π(D), π-π(T), H-π(T), π+-π(D), π+-π(T), H+-π(T), π+2-π(D), M+-π, and M+2-π
interactions which are described in Tables 1 and 2. (c) Linear or multiple linear polynomial regression curves between (i)
Etot and Ees*, (ii) Etot and Eind**, (iii) Etot and Ees,ind () Ees* + Eind**), and (iv) Etot and Edisp,exch () Edisp** + Eexch*). Insets in (i),
(ii), and (iii) are the expanded figures in the region of small values of -Etot. Insets in (iv) are the linear regression curves
for Etot vs Edisp** and Etot vs Eexch*. The regression equations with very high degree of correlation are as follows: Etot )
-1.216 + 0.584 × Ees* - 0.052 × Ees*

2 (R2: 0.9798); Etot ) -4.441 + 1.110 × Eind** (R2: 0.9921); Etot ) 0.102 + 0.793 ×
Ees,ind (R2: 0.9967). Thus, if any component of Etot, Ees, Eind**, or Ees,ind is known, other components can be approximately
estimated.
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contributions from the induction energy (∼32%) and the
electrostatic energy (∼39%).

On the other extreme, the M+-π complexes have small
contribution from dispersion energy (∼9% except for Cs+

of 23%), large induction energy (∼41% except for the
moderate value of 23% for Cs+), and very large electro-
static energy (∼50%), and the M++-π complexes have

very small dispersion energy (∼3%), very large induction
energy (∼66%), and large electrostatic energy (∼31%).

When we consider individual π-complexes on the
ternary diagram (Figure 5a), there are a few overlapping
points between various forms of π-complexes. However,
when the displaced-stacked π-complexes along with the
stacked metal cation-π complexes (Figure 5aD) are

Figure 5. (a) Ternary diagrams of the attractive energy component terms (Ees*, Eind** and Edisp**) for the Rg-π, CH-π(T), π-π(D),
π-π(T), H-π(T), π+-π(D), π+-π(T), H+-π(T), π+2-π(D), M+-π, and M+2-π interactions for all the systems studied here (a), for only
the displaced stacked systems (aD), and for only the T-shaped systems (aT). (b) 3D-plot of Etot vs any two fractional values fdisp,

fes and find of Ees*, Eind**, and Edisp**, respectively. (c) Ternary Diagrams plotted using f′exch, f′es,ind, and f′disp for all the systems
studied here (c), for only the displaced stacked systems (cD), and for only the T-shaped systems (cT). (d) 3D-plot of Etot vs any
two of f′disp, f′es,ind, and f′exch [inset for Rg-π, CH-π, H-π(T), and π-π(T)].
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separated from the T-shaped π-complexes (Figure 5aT),
the π-π(D), π+-π(D), π+2-π(D), M+-π, and M+2-π com-
plexes are well separated from each other except for very
few cases.

The 3D-plots of Etot (Figure 5b) with respect to fractional
contribution of any two attractive energy components of the
ternary diagram (Figure 5a) resolves the overlapping points
between π-π(T) and π+-π(D) complexes by the differences
in height of Etot. The π+-π(T) complexes have much smaller
heights in -Etot than the π+2-π(D) complexes. Though the
π+-π(D) and H-π(T) complexes are partially overlapped on
the ternary diagram in Figure 5a, the π+-π(D) complexes
have much higher height in -Etot than the H-π(T) complexes
in Figure 5b. One of the closely located points of the Rg-π
complexes (Kr complex) at the close vicinity of the π-π(D)
complexes (C6H6 and Tol complexes) is distinguished from
the differences in their height of -Etot.

Finally, we have drawn a second set of ternary (Figure
5c) diagrams with the inclusion of the exchange repulsion
energy terms in addition to the attractive energy components,
where the fractional terms are given by f′es,ind ) (Ees* +
Eind**)/(Eattr - Eexch*), f′disp ) Edisp**/(Eattr - Eexch*), and f′exch)
-Eexch*/(Eattr - Eexch*). Although the M+2-π complexes have
much larger binding energy than the M+-π complexes, the
ternary diagrams in Figure 5c show that both complexes
(with the exception of the Cs+-benzene complex) are
clustered on the top of diagrams with the maximum
contribution of -Ees,ind and the least contributions from
-Edisp** and -Eexch*. The Cs+-benzene complex is located
close to the π+-π(T), H+-π(T), and π+2-π(D) complex. The
π+-π(T), H+-π, and π+2-π(D) complexes are located in the
middle of the ternary diagram along the -Ees,ind axis. In this
context, the π+-π(T) complexes have similar characteristics
to non-π organic cation-π complexes, but are distinctly
different from the metallic cation-π complexes. This also
suggests the importance of the exchange repulsion terms
toward the understanding of various π-systems. The π+-π(D)
complexes are located in between the π+-π(T) complexes
on the top of the diagram and the π-π complexes on the
bottom (Figure 5c). However, the π+-π(D) complexes
overlap with the H-π(T) complexes, and the π+2-π(D)
complexes overlap with the π+-π(T) and H+-π(T) complexes.
In the ternary diagram of displaced-stacked π-complexes
along with the stacked metal cation-π complexes (Figure
5cD), the Rg-π, π-π(D), π+-π(D), π+2-π, and (M+-π, M+2-
π) complexes are separated from each other with the
exception of the Cs+-benzene complex which lies very close
to the π+2-π complex. The overlaps between M+2-π and the
M+-π complexes, between Cs+-benzene and the π+2-π
complex, and between Kr and C6H6/Tol complexes are
distinguished by the differences in height of -Etot (Figure
5d). The C2H2 and NH3 complexes are still located very close
to each other with nearly similar heights. Hence, the NH-π
complex of NH3 is very similar in nature to the CH-π
complex of C2H2.

On the basis of the above analysis, though the π+-π(T)
complexes could be treated in the same category of non-π
organic cation-π complexes, it is however distinctly different
from the metallic cation-π systems. The π+-π(D) complexes

have different characteristics from the π+-π(T) complexes
and are well separated from both the neutral π-π(D)
complexes with small Eind** or Ees,ind on the bottom and the
metallic cation M+-π complexes with large Eind** or Ees,ind

on the top in the ternary diagrams (Figure 5, parts a and c).
Hence, the π+-π(D) complexes need to be considered as a
special type of π-interaction which lies in between the well-
known π-π and cation-π complexes.

4. Concluding Remarks

On the basis of extensive structural and energetic analysis
of various model systems as the representatives of Rg-π,
CH-π(T), π-π(D), π-π(T), H-π(T), π+-π(D), π+-π(T), H+-
π(T), π+2-π(D), M+-π, and M+2-π interactions, the nature
of these interactions is systematically investigated and
compared for the similarities and differences between dif-
ferent types of π-interactions in terms of the energy
components. Among all of the energy components, induction
energies were found to have the highest correlation with the
total binding energies of the π-complexes, which is followed
by electrostatic energies. Although dispersion and repulsive
exchange energies independently show very poor correlations
with total binding energies, their sum shows an improved
correlation with total binding energies due to the cancelation
effect. The magnitude of the energy components are impor-
tant for quantitative understanding of the strength of binding
patterns in π-complexes, while the ternary diagrams em-
ployed with selected energy components which show distinc-
tive features for different types of π-interactions help in
clustering different π-interactions on different spots in the
diagrams. The ternary diagrams along with the 3D-plots of
Etot with respect to fractional contribution of any two
contributing component terms help resolve most of the
overlapping points in ternary diagrams for a qualitative and
quantitative classification of different π-complexes except
for a few closely overlapped points between CH-π and H-π
complexes which are somewhat similar in characteristics to
each other.

From the present comprehensive analysis of various types
of π-interaction, we have demonstrated that the π+-π
interaction is a special type of π-interaction because the π+-π
complexes show different features from the conventional π-π
complexes and cation-π complexes (for both organic non-
π cations and metallic cations). Even the π+-π(D) complexes
show different characteristics from the π+-π(T) complexes.
The π+-π(D) complexes, which are more commonly ob-
served in the crystal structures than the π+-π(T) complexes,
have large dispersion and electrostatic energies and moderate
induction energy, while the π+-π(T) complexes have large
electrostatic energy and substantial dispersion and induction
energies. Namely, the π+-π(D) complexes have larger
dispersion energy but smaller induction energy than the π+-
π(T) complexes. The π+-π interaction has both characteristics
of conventional π-π and cation-π interactions but cannot be
represented by their combined interactions. It is much weaker
than the commonly known cation-π interaction, but much
stronger than the π-π interaction.

For the π+-π complexes with the positively charged
π-system having the (N-H)+ or (C-H)+ group such as in
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methyl imidazolium, N-methyl-guanidinium, pyridinium, and
dimethyl imidazolium, the T-shaped structure [π+-π(T)
complexes] are more stable than the displaced-stacked
structure [π+-π(D) complexes] in the absence of solvent
molecules and counteranions, whereas the former tends to
be less stable than (or isoenergetic to) the latter in the
presence of the solvent molecules and counteranions. This
explains why the stacked structures are much more common
in the π+-π interaction. This π+-π interaction helps in
assembling π-systems since the direct interactions with water
or polar solvent molecules are suppressed. We believe that
this comprehensive analysis of various types of π-interaction
will be useful for future research works involving π-interac-
tions in molecular assembly, molecular recognition and
sensing, and optimal design of drugs and functional materials.

Synopsis

A comprehensive energy analysis of various π-interactions
and comparison of their properties in terms of the attractive
and repulsive energy components with the aid of ternary
diagrams demonstrate that the πcation-π interaction is a special
type of π-interaction which can be represented by neither
the conventional π-π interaction nor the conventional
cation-π interaction.
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2006, 128, 11730.

(5) Fiethen, A.; Jansen, G.; He�elmann, A.; Schütz, M. J. Am.
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Abstract: Efficient calculation of the properties of metal-containing complexes relevant to
catalysis is of major interest for better characterizing and optimizing the catalysts. For this, a
new force field, called VALBOND-TRANS here, is proposed. It is based on the existing VALBOND
force field of Landis and co-workers, extended by adding terms that account for electronic effects
such as the trans influence of ligands on bond lengths and relative energies. Parameters and
results for model octahedral complexes of Ru, Os, Rh, and Ir are determined and discussed.
The model is then applied to the study of reactive intermediates involved in asymmetric
hydrogenation catalyzed by iridium complexes with chiral phosphinooxazolines (PHOX) ligands.
The new force field explores and capitalizes on the separation of electronic and steric effects
on the stability of different diastereomers and reproduces DFT results which are consistent with
experimental observations.

1. Introduction

Theoretical methods can be very helpful for understanding
and predicting structure and reactivity in organometallic
chemistry. Density functional theory (DFT) methods, in
particular, have been very successful for the computational
study of transition metal complexes.1 However, DFT cal-
culations are CPU-intensive, which makes the treatment of
large complexes difficult. Such calculations are often limited
to geometry optimizations of gas-phase structures or to model
systems with smaller and sometimes unrealistic ligands.
Dynamics simulations and calculations over large libraries
of compounds are often impractical. Therefore, having a
faster, even if approximate method is desirable. Molecular
mechanics (MM) force fields such as OPLS,2 AMBER,3 and
CHARMM4 have become standard methods in biomolecular
chemistry and are routinely used for molecular dynamics
simulations of systems with up to 1 million atoms.5 However,
the development of general force fields for transition metal
complexes has been relatively limited because of the unique
difficulties presented by these types of compounds:6-15

metals can have a variety of coordination numbers, π-binding
ligands can bind in various ways, and electronic effects such

as the Jahn-Teller distortion and the trans influence need
to be considered. Although considerable work has been done
toward including the Jahn-Teller distortion in molecular
mechanics,16,17 the molecular mechanics of the trans influ-
ence remains largely unexplored. Here, we present a model
for the trans influence and implement it in a force field for
octahedral complexes of iridium and three other platinum-
group metals (Ru, Os, and Rh). We then test our method on
real complexes relevant to asymmetric hydrogenation. The
current work is a conventional force field in the sense that it
does not allow the formation and breaking of bonds, which
are essential for the modeling of chemical reactions. This
work, however, can be readily combined with the adiabatic
reactive molecular dynamics (ARMD) approach recently
developed by our group.18 In ARMD, a conventional force
field description of the reactants and products is used for
each dynamics time step, and the system is propagated along
the lower energy state, with specific rules for treating
crossover between the reactant and product states.

Asymmetric hydrogenation is one of the most important
catalytic methods for the preparation of optically active
compounds, both in the laboratory and in industry.19 Iridium
catalysts with chiral N,P ligands are a class of highly efficient
catalysts that have expanded the scope of asymmetric* Corresponding author e-mail: m.meuwly@unibas.ch.
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hydrogenation to include unfunctionalized alkenes.19-23 In
a recent study, we used DFT calculations in combination
with NMR data to show that the hydrogenation reaction may
proceed through dihydride intermediates 1a-1d (Figure 1).24

Here we revisit these compounds to see whether it is possible
to capture the necessary electronic effects within a force field
representation that can also be extended to other related
compounds.

VALBOND, developed by Landis and co-workers, is a
force field that computes the angle bending energies based
on valence bond theory.25 Its main premise is that the
bending energy is a function of the overlap of the hybrid
orbitals on the central atom, using hybridizations that are
computed using certain rules. Unlike the simple harmonic
approximation used by many force fields for the bending
potential, the VALBOND bending function gives reasonable
results at very large distortions. VALBOND also supports
hypervalent compounds by means of a 3-center-4-electron
bonding model.26 As a result, it can describe geometries
found in organometallic compounds, such as octahedral,
trigonal biplanar, and square planar. VALBOND has been
shown to work for transition metal compounds of a largely
covalent nature, such as hydrides and alkyls.27 For these
compounds, VALBOND uses a 12-electron rule, where only
sd hybrids are considered, and excess electrons are involved
in hypervalent bonds. In order to have a complete force field,
VALBOND has to be combined with another force field such
as CHARMM4 or UFF,28 to account for the bond stretching,
torsional, and nonbonded energy terms. VALBOND does
not account for the trans influence, but the valence bond ideas
behind the force field led us to investigate a plausible way
of incorporating it.

Another approach to the molecular mechanics of coordina-
tion compounds is the inclusion of force field terms cor-
responding to the ligand field stabilization energy, as done
in the ligand field molecular mechanics (LFMM) model of
Deeth and co-workers17 and the SIBFA-LF method of Gresh
and co-workers.29 The LFMM method has been applied to
Werner-type complexes of Cu2+, Ni2+, Co3+, and Mn2+; it
is able to account for a number of coordination geometries
and for the Jahn-Teller effect and can also incorporate the
contribution of the s orbitals that is important for complexes
such as WH6 and [CuCl4]2-. LFMM has also been success-
fully applied to the study of type I copper proteins.30

However, we chose VALBOND for our work because it has
been tested more extensively with compounds resembling
the ones involved in catalytic hydrogenation, such as alkyl

and hydride complexes of metals from the second and third
transition series.27

The trans influence has been defined as “the tendency of
a ligand to selectively weaken the bond trans to itself”.31 It
is an electronic ground-state phenomenon, unlike the trans
effect, which is defined in terms of the rate of a substitution
reaction.32 Although much of the work on trans influences
and trans effects has focused on square planar complexes,
these effects are also important for octahedral complexes.32

Experimental studies of the trans influence generally con-
centrate on the lengthening of the trans bond as measured
from crystallographic methods. The trans influence can also
affect the relative stability of different diastereomers, but this
has not been studied as extensively experimentally due to
the difficulties of gathering thermochemical data for metal
compounds.33 For this reason, theoretical studies and mo-
lecular mechanics methods have often concentrated on the
geometric influence. An early example is an MM3 study
which found that the central nitrogen in terpyridine forms
an unusually short Ru-N bond which causes the Ru-N bond
trans to it to stretch; the authors simulated this effect within
the force field by adding a pseudobond to constrain the N-N
distance;34 this is a case where the trans influence is caused
not by the electronic nature of the ligand but by the strain
caused by its tridentate nature. As a note on terminology,
we use the terms structural trans influence to refer to the
bond lengthening effect and thermodynamic trans influence
to refer to the effect on the relative stability of different
diastereomers.

We believe that current theoretical methods and computer
power are ripe for a systematic study of the thermodynamic
trans influence. The main goal of the present work is to
explore the thermodynamic trans influence on the relative
energies of different diastereomers of octahedral organome-
tallic compounds and to implement a force field that can
predict which isomers are most stable. We chose the
octahedral geometry not only because of its ubiquity but also
because of its rich stereochemistry: a complex with six
different ligands has fifteen possible diastereomers, and
predicting which one is most stable involves an intricate mix
of steric and electronic effects. As a secondary goal, we also
considered the geometric trans influence and incorporated it
into our force field, but at this stage we were not concerned
with spectroscopic properties or with using the most accurate
possible functions and parameters for bond stretching and
for bonding angles.

Figure 1. DFT-calculated structures of [Ir(PHOX)(H)2(CH3Cl)2]+ complexes.24

Molecular Mechanics for the Trans Influence J. Chem. Theory Comput., Vol. 5, No. 3, 2009 531



The current work is structured as follows. First, we review
the theory underlying VALBOND and the trans influence
and describe modifications and additions we envisage. Next,
we describe the parametrization of the new method using a
training set of simple model compounds. Then we present
results for two test cases involving real complexes of
relevance to asymmetric hydrogenation. Finally, general
conclusions and suggestions for future developments are
discussed.

2. Theory

Qualitatively, the trans influence may be attributed to the
effect of different ligands on the resonance structures
representing a 3-center-4-electron bond:35,36

X: M-YTX-M :Y (1)

In this picture, the ligand that forms the stronger bond to
the metal will weaken the bond to the weaker ligand. This
leads to antisymbiosis, where “stronger” ligands prefer to
bind trans to “weaker” ones, or softer ligands prefer to bind
trans to harder ones.37

Based on the idea of the trans influence acting through a
3-center-4-electron bond, a natural place for incorporating
this effect into VALBOND is in the part of the algorithm
that treats hypervalent molecules. Note that, under this model,
the trans influence will only exist for hypervalent complexes;
however, most transition metal complexes, including all
octahedral and square complexes of groups 8-10 are
hypervalent according to the VALBOND formalism, due to
its use of the 12-electron rule instead of the 18-electron rule.

The VALBOND equations that are directly relevant to our
modifications are eqs 2-4, below, which describe hyperva-
lent bonding. For a detailed explanation and for the nonhy-
pervalent VALBOND equations, the reader is referred to the
original literature.25-27

E(R))BOF × kR(1-∆(R+π)2) (2)

∆) 1
1+m+ n(1+m cos R+ n

2
(3 cos2 R- 1)) (3)

ci )
∏
i)1

hype

∆i
2

∑
j)1

res

∏
i)1

hype

∆i
2

(4)

Here E(R) is the bending energy of a hypervalent bond, BOF
is the bond order factor (always 0.25 for hypervalent bonds),
R is the angle, kR is a force constant, and ∆ is the overlap
between two orbitals with spmdn hybridization (Figure 2).
VALBOND iterates over all possible resonance structures
(res) that distribute the hypervalent bonds among the different
ligands in different ways, giving each configuration i a weight
ci proportional to the product of ∆2 over all hypervalent
bonds (hype). The key equation is eq 2, which defines the
bending energy of a 3-center-4-electron bond as proportional
to the overlap between one orbital and another orbital shifted
by 180°. This term favors linear geometries in hypervalent
bonds, because ∆(R+π) ) 1 when R ) 180°, which leads
to a minimum of E(R) at 180°. Because the trans influence

also acts along hypervalent bonds and is expected to be
maximal at 180°, it seems reasonable to include the ∆(R+π)2

term from eq 2 in a function for representing the thermo-
dynamic trans influence. A simple and efficient function that
was successful in practice is

Etrans ) ∑
i)1

hype

pAB∆(R+π)2 (5)

where pAB is an adjustable parameter which depends on the
types of ligands and metal involved. These parameters are
determined by least-squares fitting to DFT energies of model
compounds. Eq 5, like eq 2, is used for each resonance
configuration and weighed accordingly.

For the structural trans influence, preliminary tests showed
that the bond lengths could best be fitted by a function of
the type

rA(B))r0
A(1+ sA · iB ⁄ 100) (6)

where rA(B) is the equilibrium bond length of a bond from
the metal to a ligand of type A which is trans to a ligand of
type B, r0

A is the reference or unperturbed bond length to a
ligand of type A, iB is the “trans influence intensity” due to
ligands of type B, and sA is the “lengthening sensitivity” of
bonds to ligands of type A. Like the trans influence on the
energy, the trans influence on the bond length is implemented
in the force field as part of the hypervalent bonding
calculation and includes the overlap function as

rA(B))r0
A(1+ sA ·∆(R+π)2 · iB ⁄ 100) (7)

In the molecular mechanics calculations, rA(B) is used for
the equilibrium bond length, r0, in the standard harmonic
bond energy function, Ebond(r) ) kB(r - r0)2.

3. Parametrization

Thermodynamic Trans Influence. The model was
parametrized against a training set comprising 129 series
of diastereomers of octahedral complexes of Ru, Os, Rh,
and Ir with oxidation states II and III, for a total of 532
structures (Table 1). Each series consists of all diastere-
omers of a given complex, ranging from two isomers for
complexes of type MX4Y2 (cis/trans isomerism) and
MX3Y3 (fac/mer isomerism), to up to fifteen diastereomers
for complexes with six different ligands. The choice of

Figure 2. Cartoon representation of the overlap between two
sd2 orbitals at 90°. For normal bonds, the overlap is minimal
at 90°, the equilibrium geometry. For hypervalent bonds, the
equilibrium geometry corresponds to the maximum overlap
at 180°.
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compounds in the training set was motivated by complexes
from the Cambridge Structural Database38 and from the
review by Coe and Glenwright,32 with all ligands replaced
with small model ligands: Cl-, Br-, H-, H2O, NH3, PH3,
CH3

-, CH3OCH3, CH3Cl, CH2dCH-, and C6H5
-. This

truncation, in addition to speeding up the calculations,
minimizes steric interactions between the ligands, which
allows us to better focus on electronic effects. All the
reference energies and structural data were obtained from
B3LYP39 calculations, which were carried out using
GAUSSIAN 03,40,41 with the LANL2DZ effective core
potential42 for the metals and the 6-31G(d,p) basis set
for all other atoms. The grid)ultrafine option was used
for consistency with previous work.24

The DFT energy of each compound relative to the
maximum energy isomer in its series was fit to the following
function

∆E) ∑
trans

pAB (8)

by means of a least-squares procedure. This function is
equivalent to eq 5 for perfectly octahedral geometries. The
relative energies used in the parametrization can be inter-
preted as energies of isomerization from the least stable
isomer to a given isomer of a compound. For example,
Figure 3 shows the series of compounds with formula
[Ir(PH3)3(H)(CH3)(Cl)], along with their relative energies
computed using eq 8 and the reference DFT values. For Ru
and Os, which are found in two different oxidation states
(II and III) in the training set, separate parameters were fitted
for each oxidation state. Note, however, that the same
parameters (“atom types”) were used for all carbon ligands
(CH3

-, CH2dCH-, and C6H5
-) and for all oxygen ligands

(H2O and CH3OCH3); the validity of this assumption will
be scrutinized further below. Because only relative energies
are of interest, a common zero of energy was chosen by
setting all the parameters involving the chloride anion to zero.
The resulting parameters together with their average errors
are shown in Table 2. The 109 adjustable parameters were
fitted to 403 relative energies, with an overall mean absolute
deviation (MAD) of 1.31 kcal/mol and an rmsd of 1.78
kcal/mol. The correlation between the values calculated using
eq 8 and the DFT data is shown in Figure 4. The linear
regression is close to y ) x with R2 ) 0.93. Most of the
isomerization energies are within a range of 25 kcal/mol;
the four points between -40 and -30 kcal/mol all cor-
respond to compounds with the CH3Cl ligand, which binds
very weakly and is particularly sensitive to the thermody-
namic trans influence. When considering the values of the
parameters, the antisymbiotic effect is especially noticeable

for hydride and methyl, which have a strong trans influence.
Having H or C trans to H or C is unfavorable by up to 20
kcal/mol, relative to having them trans to chloride; con-
versely, having C or H trans to weaker trans-influencing
ligands such as N and O is generally favorable, by up to
-10 kcal/mol.

Although two different parameters were required for
chlorine-binding ligands (one for the chloride ion and one
for chloromethane), parameters for neutral oxygen ligands
were found to be reasonably transferablesthe same param-
eter can be used for water and for dimethyl ether as a
ligand. Similarly, different carbon ligands are reproduced
satisfactorily despite changes in hybridization and the
addition of electron-donating or electron-withdrawing
groups. As an illustration, Table 3 shows the isomerization
energies for several series of nine compounds with formula
[Ir(H)(PH3)(NH3)2(OH2)R]+, where R is a formally anionic
carbon ligand. The same trend is followed for all the R
ligands considered, with an overall mean absolute deviation
of 0.9 kcal/mol.

A possible drawback of eq 8 is that, for N ligand types,
up to N(N-1)/2 parameters are required per metal; that is,
the number of parameters scales roughly as N2. It would be
desirable to have atom-based parameters which scaled as N.
We investigated functions such as pAB ) pA - pB, based on
the idea of antisymbiosis,37 but the results, while initially
promising, were not sufficiently general for our purposes.
Other simple functions such as pAB ) pA ·pB were also tested
with similar results.

Structural Trans Influence. The parameters in eq 6 were
fit against all 2622 metal-ligand bond lengths in the training
set using a least-squares method. The resulting parameters
and average errors are summarized in Table 4. The overall
mean absolute deviation is 0.019 Å (rmsd ) 0.027 Å), which
is less than one-tenth of the observed range of bond lengths
for each bond type (for example, the ligands exerting the
strongest trans influence, hydride and alkyl, can lengthen
bonds trans to them by about 0.2 Å). The correlation between
the predicted and the reference bond lengths is shown in
Figure 5a. For comparison, a fit where the trans influence
term is omitted, by setting iB or sA to zero, was also
calculated; only the values of r0 (not shown) were optimized
for this comparison. This way we can compare our new
approach with what would be the best possible result that
can be obtained with a “constant r0” approach. With the trans
influence neglected, the mean absolute deviation increases
to 0.044 Å (rmsd ) 0.061 Å). The correlation between the
bond lengths calculated without the trans influence and the
reference values is shown in Figure 5b.

Examination of the structural trans influence parameters
reveals a slight reciprocal correlation between intensity and
sensitivity (correlation coefficient R ) 0.53); this agrees with
the analysis of the trans influence in terms of resonance
structures discussed above, because ligands with a stronger
trans influence will form bonds with a more covalent
character, which can reasonably be expected to be less
flexible than the more polar bonds formed with the weaker
trans-influencing ligands. Another striking feature of the
parameter values are the large differences between the para-

Table 1. Composition of the Training Set

number of series number of isomers

Ru(II) 20 60
Ru(III) 24 134
Os(II) 16 49
Os(III) 13 69
Rh(III) 24 86
Ir(III) 32 134
total 129 532
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meters for oxidation states II and III of Ru and Os. The
bond lengths for these metals in oxidation state III have
larger errors; a detailed inspection of some of the worst
cases revealed a marked Jahn-Teller distortion, particu-
larly for Ru(III). This is expected for low-spin d5

complexes. The Jahn-Teller effect may also explain why
the errors in the isomerization energies were largest for
Ru(III) complexes.

An analysis of the deviations as a function of total charge
revealed a small correlation. Adding a term q ·pM to eq
6,where pM is a metal-dependent parameter and q is the total
charge, reduces the overall MAD by 0.001 Å and the rmsd
by 0.002 Å. Because the improvement due to considering
the charge is modest, we decided to keep the original form
of eq 6 for simplicity.

Figure 3. Isomers with formula [Ir(PH3)3HCH3Cl], with relative computed energies using eq 8 in kcal/mol (DFT values in
parentheses).

Table 2. Parameters, Mean Absolute Deviation (MAD),
and Root-Mean-Square Deviation (RMSD)a

parameter Ru(II) Ru(III) Os(II) Os(III) Rh(III) Ir(III)

pBrBr 0.30 -0.07 0.41 -1.34 0.54 3.35
pCBr 0.19 -1.06 3.14 6.41
pCC 5.95 4.32 20.61 18.61
pCH 10.28 15.30 19.65 18.30
pCO -8.34 -7.50 -9.55 -6.16
pHH 16.17 18.12 15.95 20.42
pNBr -0.54 -2.00 -1.12 0.67 2.28
pNC -4.64 -3.73 -5.79 -1.08 -3.68 -2.81
pNH -1.38 -3.67 0.15 3.92 -5.82 -4.27
pNN -6.46 -10.28 -7.77 -6.93 -8.88 -9.58
pNO -6.63 -8.18 -9.60 -5.20 -3.35 -5.50
pOBr -0.33 -1.47 -1.35 -0.14
pOH -9.26 -8.81 -11.26 -2.54 -9.87 -7.35
pOO -7.50 -5.49 -14.22 -1.26 2.38 1.28
pPBr 1.01 -0.37 2.16 -0.15 0.47 1.92
pPC -0.31 2.68 1.14 7.88 0.63 2.73
pPH 4.74 8.32 1.51 4.58
pPN -3.43 -11.54 -2.99 -7.18 -7.29 -7.44
pPO -6.66 -13.20 -8.89 -10.43 -6.97 -7.35
pPP 4.45 -9.04 9.30 -8.20 -2.53 0.26
pPCl*

b -3.45
pNCl* -3.66
pHCl* -6.18
pCl*Cl* 6.64
N 40 110 33 56 62 102
MAD 0.97 1.95 1.05 1.08 1.05 1.23
rmsd 1.26 2.47 1.48 1.45 1.36 1.52

a All values are in kcal/mol. b Cl* refers to the formally neutral
chlorine atom in CH3Cl.

Figure 4. Isomerization energies computed using eq 8 versus
the reference DFT values. The solid line corresponds to the
function y ) x.

Table 3. Relative Energies of Compounds with Formula
[Ir(H)(PH3)(NH3)2(OH2)R]+ (kcal/mol)

DFT energy for ligand R

isomer
fit

(eq 8) CH3
- C2H4

- C6H5
- p-C6H4OMe- p-C6H4NO2

-

1 -16.5 -15.7 -15.4 -14.1 -13.9 -14.3
2 -9.1 -9.3 -8.8 -8.6 -8.5 -8.6
3 -19.6 -20.9 -19.6 -20.5 -20.7 -20.1
4 -12.4 -13.4 -13.4 -10.3 -10.6 -12.9
5 -23.0 -23.4 -22.7 -22.2 -23.4 -23.4
6 -23.2 -22.5 -21.6 -21.0 -20.7 -21.0
7 0 0 0 0 0 0
8 -4.0 -3.9 -4.4 -3.8 -3.9 -3.9
9 -19.8 -20.1 -20.8 -19.5 -19.7 -19.2

Table 4. Parameters and Average Errors for the Bond
Lengths Calculated Using Eq 6

parameter Ru(II) Ru(III) Os(II) Os(III) Rh(III) Ir(III)

r0
Br (Å) 2.543 2.396 2.566 2.414 2.448 2.363

r0
C 2.084 2.062 2.020 2.064 2.048 2.011

r0
Cl 2.425 2.283 2.430 2.307 2.362 2.298

r0
Cl* 2.252

r0
H 1.565 1.553 1.567 1.586 1.510 1.484

r0
N 2.114 2.087 2.081 2.087 2.060 1.954

r0
O 2.159 2.081 2.140 2.068 2.102 1.977

r0
P 2.272 2.237 2.219 2.242 2.242 2.151

sBr 0.83 0.85 0.78 1.00 1.16 1.22
sC 1.31 0.32 2.33 0.45 0.76 0.74
sCl 1 1 1 1 1 1
sCl* 1.69
sH 1.55 0.74 2.00 0.75 1.11 1.11
sN 1.70 0.92 2.14 0.97 1.41 1.50
sO 1.80 1.31 2.00 1.52 1.62 1.73
sP 1.04 1.31 1.60 0.97 1.33 1.14
iBr 2.06 5.28 2.09 4.45 2.77 6.25
iC 5.76 13.02 4.52 10.66 9.07 11.48
iCl 2.01 4.87 2.14 4.30 2.32 5.81
iCl* 4.13
iH 5.99 14.80 4.68 11.68 8.23 11.41
iN 1.84 4.04 2.05 3.65 1.78 5.42
iO 0.95 2.12 1.63 1.89 0.99 4.41
iP 3.25 6.25 3.35 6.10 3.54 7.42
N 306 426 294 420 516 660
MAD (Å) 0.020 0.023 0.020 0.021 0.019 0.015
rmsd (Å) 0.027 0.032 0.026 0.029 0.027 0.022
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4. Application to Systems of Practical
Relevance

To test the practicality of the method (referred to as VAL-
BOND-TRANS), two series of complexes, the iridium dihy-
drides 1 and the monohydrides 2, were investigated in more
detail using DFT and VALBOND-TRANS. To this end,
VALBOND and the extensions described above were imple-
mented into CHARMM version 34a1.4The CHARMM22
parameter set was used.43 When CHARMM force field
parameters were missing, a) bond lengths were estimated as
the sum of the covalent radii, and force constants were set
to a default value; b) dihedrals were generally neglected,
except for some dihedrals for triphenylphosphine and PHOX,
which were obtained from energy scans on model com-
pounds; c) partial charges were either set to zero or natural
population analysis (NPA) charges from a DFT calculation
were used;44 and d) Lennard-Jones parameters were obtained
from analogous CHARMM atom types. For simplicity, all
angles, including those in the organic ligands, were treated
using VALBOND, so no additional CHARMM angle bend-
ing parameters were necessary. All the nonstandard param-
eters that were used are listed in the Supporting Information.

As a first test, we revisited the iridium dihydrides involved
in asymmetric hydrogenation, 1a-1d, that we had studied
previously.24 The calculated DFT and VALBOND-TRANS
energies are shown in Table 5. To assess the improvement
due to the modifications presented in this work, the relative
energies calculated using VALBOND without the trans terms
are also shown. The qualitative stability sequence 1c > 1d
> 1a > 1b is reproduced perfectly using VALBOND-
TRANS, and the magnitudes of the relative energies are also
reproduced well, with the largest deviation being 1.4 kcal/

mol, occurring for the highest-energy isomer. Without the
trans term, the stability sequence is not reproduced, and the
largest error increases to 10 kcal/mol. An important observa-
tion is that the difference between isomers c and d and
between a and b can be assumed to be largely steric, because
they both have the same pairs of trans ligands (e.g, for c
and d, P is trans to Cl, N trans to H, and Cl trans to H). The
steric energy difference is accounted for by the nonbonded
(electrostatic and van der Waals) interactions in the CHARMM
force field, which are represented using Coulomb’s law and
a Lennard-Jones potential. To test the influence of the partial
charges on the results, the calculation was performed using
two different charge models. In one, all the atoms had a
partial charge of zero; in the other, the partial charges were
set to the NPA charges from the B3LYP calculation on
compound 1c. The dielectric constant was set to ε ) 4, to
account to some extent for the polarizability of the complex
itself and for the large magnitude of the partial charges
typical of the NPA method. Perhaps fortuitously, in this case
the calculation with no charges agrees with the DFT results
about as well as the calculation with the NPA charges.

As a second test, we considered complex 2, which has
been observed during the hydrogenation of imines using Ir-
PHOX catalysts, as shown in Figure 6.45 This complex has
twenty possible diastereomers, which makes it an interesting
test case. Again, the VALBOND-TRANS calculations were
carried out using two different charge models, one with no
charges and one with NPA charges, also with ε ) 4. To
prevent the choice of a single reference isomer from biasing
the evaluation of the average deviations, we considered the
isomerization between each possible pair of isomers, for a
total of 190 isomerization energies spanning a range from
-20 to +20 kcal/mol. The mean absolute deviations between
VALBOND-TRANS and DFT are 4.8 kcal/mol with no
charges and 4.7 kcal/mol with NPA charges. The partial
charges are largely configurationally independent; using the
charges derived from any of the isomers produced similar
results (not shown), which indicates that it is reasonable to
use the same partial charges for every isomer. The results
using NPA charges are shown in Figure 7a,c; the trend in
isomerization energies is qualitatively correct but not within
chemical accuracy and there are significant outliers. How-

Figure 5. a) Bond lengths computed using eq 6 versus the reference DFT values. b) Fit to eq 6 neglecting the trans influence
(i.e., sA ) 0 or iB ) 0). The solid lines correspond to y ) x. Color code: black, Ru(III); red, Ru(IV); green, Os(II); blue, Os(III);
magenta, Rh(III); orange, Ir(III).

Table 5. Relative Energies (in kcal/mol) for Complexes
1a-1d from DFT, VALBOND-TRANS, and VALBOND
Calculations

VALBOND-TRANS VALBOND

compound DFT no charge NPA no charge NPA

1a 8.6 7.5 7.1 -1.3 -2.0
1b 12.1 10.6 11.0 2.1 2.1
1c 0 0.0 0.0 0.0 0.0
1d 1.2 1.0 0.4 1.4 1.1
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ever, the lowest-energy isomers are identified correctly using
VALBOND-TRANS. When VALBOND without the trans
terms is used instead, the low-energy isomers are not
identified correctly and the correlation between the VAL-
BOND and DFT energies is extremely poor, as shown in
Figure 7b,d (R2 ) 0.02 and MAD ) 10.7 kcal/mol). A
calculation with ε ) 1 resulted in a mean absolute deviation
of 10.8 kcal/mol, and an analysis of the energy terms
indicated that the electrostatic repulsions were overestimated,
overwhelming all the other energy terms. This special
sensitivity to the electrostatic terms in the case of compound
2 may stem from its very crowded ligand environment.

The ability of the force field to reproduce the overall shape
of the complexes was assessed qualitatively by superimpos-
ing the DFT- and VALBOND-TRANS-optimized structure
that minimizes the rmsd (see Figure 8). A deviation that is
noticeable in both cases is a slight difference in the twisting
of the oxazoline ring as well as slightly different torsions
for the phenyl rings. While such a measure is useful for visual
comparison, the magnitude of the rmsd is, however, domi-
nated by deviations of the more flexible parts away from
the metal center. Therefore, a more direct comparison of the
bond lengths and angles was made. Plots showing the
correlation between the metal-ligand bond lengths using

Figure 6. Catalytic imine hydrogenation, and structure of complex 2, isolated when using THF as a solvent.

Figure 7. a) Relative energies of the 20 isomers of 2 using VALBOND-TRANS with NPA charges vs DFT. b) Same as a) but
without including the new treatment of the trans influence. c) All isomerization energies between the 20 isomers of 2, using
VALBOND-TRANS vs DFT. d) Same as d) but without the trans influence. The solid lines correspond to the function y ) x. The
R2 values for a-d are 0.78, 0.03, 0.79, and 0.02, respectively.

536 J. Chem. Theory Comput., Vol. 5, No. 3, 2009 Tubert-Brohman et al.



VALBOND-TRANS and VALBOND vs DFT are shown in
Figure 9. For both compounds 1 and 2, the MAD for the
bond lengths was 0.045 Å using VALBOND-TRANS,
compared with 0.083 Å using VALBOND without the trans
influence terms. For the angles, the MAD for compounds 1
and 2 were 6.4° and 4.0°, respectively, regardless of whether
the trans influence terms were included or not. The largest
deviations in the angles occur because normal sd2 bending
term in VALBOND is soft, while the hypervalent bending
term in VALBOND is hard. As a result, large distortions
such as the N-Ir-C angle, which is forced away from the
ideal 90° due to the constraint of forming part of a five-
member ring, have a large effect on the position of the trans
atoms. For example, an N-Ir-H angle in the lowest energy
isomer of 2 is 171.5° in the DFT geometry but 179.3° in the
VALBOND geometry. Adjustment of the VALBOND pa-
rameters can reduce this problem, but for simplicity we
decided to keep the default parameters in this work.

5. Conclusions

We have proposed and tested an extension of VALBOND
combined with the CHARMM22 force field to account for
the trans influence in octahedral complexes, based on

valence-bond concepts such as 3-center-4-electron bonds.
The proposed function fits the 403 isomerization energies
in the training set with a mean absolute deviation of 1.3 kcal/
mol, a result which is close to chemical accuracy using a
minimal number of atom types. We tested whether the
resulting parameters are transferable to two series of related
complexes with large chiral ligands. In the case of the
dihydride complex 1, VALBOND-TRANS reproduces the
DFT results very well, while for compound 2 the results were
more qualitative but still identified the most stable isomers
correctly. This demonstrates that the force field allows for
the separation of electronic and steric effects to investigate
the stability of different diastereomers. Since the steric effect
can be accounted for using traditional force field nonbonded
terms, and it is the steric interactions with the chiral ligands
which drive enantioselectivity, the proposed force field may
become a powerful tool for the study of enantioselective
reactions involving transition metal catalysts. There are
several areas where further work will be beneficial: 1) the
development of a fast and systematic way of determining
the partial atomic charges, instead of using NPA charges
from a DFT calculation; 2) the inclusion of Jahn-Teller
distortions; 3) an extension of the method for pi and sigma

Figure 8. Comparison between the DFT-optimized structures (blue) and the VALBOND-TRANS-optimized structure (red) for
compounds 1c and the lowest energy isomer of 2. The RMSDs are 0.53 Å and 0.34 Å, respectively; for discussion see text.

Figure 9. a) Bond lengths calculated using VALBOND-TRANS vs DFT for all isomers of compounds 1 (red triangles) and 2
(blue circles). b) Same as a) but without including the new treatement of the trans influence. The solid lines correspond to the
function y ) x.
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complexes, with ligands such as ethylene and H2, respec-
tively; 4) adiabatic reactive molecular dynamics, to poten-
tially locate transition states; 5) extension to other metals
and geometries; and 6) a more extensive reparametrization
of the entire force field, including all relevant CHARMM
and VALBOND parameters. The elements used in this work
were chosen because of their importance to catalysis, the
great stereochemical diversity allowed by the octahedral
geometry, and their relatively simple electronic ground states.
However, we expect that the method can be generalized to
square-planar and trigonal bipyramidal geometries.
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Abstract: A general and effective time-independent approach to compute vibrationally resolved
electronic spectra from first principles has been integrated into the Gaussian computational
chemistry package. This computational tool offers a simple and easy-to-use way to compute
theoretical spectra starting from geometry optimization and frequency calculations for each
electronic state. It is shown that in such a way it is straightforward to combine calculation of
Franck-Condon integrals with any electronic computational model. The given examples illustrate
the calculation of absorption and emission spectra, all in the UV-vis region, of various systems
from small molecules to large ones, in gas as well as in condensed phases. The computational
models applied range from fully quantum mechanical descriptions to discrete/continuum quantum
mechanical/molecular mechanical/polarizable continuum models.

1. Introduction
Nowadays the characterization of complex biological systems
or nanomaterials of direct technological and social interest
relies more and more on computational approaches, e.g., for
the evaluation and rationalization of structural, energetic,
electronic, and dynamic features.1-6 On the experimental side
accurate information can be gained, in principle, by a number
of spectroscopic techniques, magnetic as well as optical.
Nevertheless, up to very recently direct comparisons between
experimental and computed spectroscopic data have been
rather scarce. Integrated approaches, capable of accurately
simulating spectra but at the same time easily accessible to
nonspecialists, are highly desirable. Such tools would allow
for the exploitation of the recent and ongoing developments
that are taking place in the field of computational spectros-
copy7-15 resulting in easy and, ideally, automatic vis-a-vis
comparisons between experimental and theoretical results.
In the present work, we introduce an approach to model

quantitatively vibronic spectra, in line with such a demand.
The integration among the different computational steps is
particularly straightforward, since all calculations are per-
formed within the same computational package: this enables
the fully automatic computation and visualization of vibra-
tionally resolved UV-visible spectra, a feature that is
routinely available for other spectroscopic ranges (e.g., IR/
Raman).

In the framework of the Franck-Condon (FC) princi-
ple,16-18 time-independent ab initio approaches to simulate
vibronic spectra are based on the computation of overlap
integrals (known as FC integrals) between the vibrational
wave functions of the electronic states involved in the
transition. The computation of FC integrals requires a
detailed knowledge of the multidimensional potential energy
surfaces (PES) of both electronic states or, within the
harmonic approximation, at least computation of equilibrium
geometry structures and vibrational properties. Till recently,
computations of vibronic spectra have been limited to small
systems or approximated approaches, mainly a consequence
of the difficulties in obtaining accurate descriptions of excited
electronic states of polyatomic molecules. Recent develop-
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ments in electronic structure theory for excited states within
the time-dependent density functional theory (TD-DFT)19,20

and resolution-of-the-identity approximation of coupled
cluster theory (RI-CC2)21 have paved the route toward the
simulation of spectra for significantly larger systems. When
treating such large systems, the inclusion of vibrational
contributions becomes very challenging, since the number
of vibrational states to be taken into account increases steeply
with the dimension of the molecule and the spectral width.
Nonetheless, most of the possible vibronic transitions do not
contribute significantly to the spectrum. Therefore the
availability of effective selection criteria to individuate a
priori the most relevant vibronic transitions within the dense
bath of possible final states, can make feasible the calculation
of the spectrum line shape also for these systems. Several
schemes have been proposed,22-27 ranging from the simplest
approach, based solely on the energy window of the
spectrum,22,23 up to rigorous prescreening techniques based
on analytically derived sum rules.27 To maximize the
efficiency of calculations, it is necessary to adopt a fast and
a priori selection scheme of general applicability for a variety
of different systems that is able to correctly choose all the
non-negligible transitions. To satisfy these conditions we
derived a general and robust tool starting from a method
recently introduced by some of us25,26 in the frame of
harmonic approximation, which has been proven to provide
very accurate spectra of medium-to-large systems with a
limited computational cost. This new computational tool has
been integrated into the Gaussian package.53 A particular care
has been taken to avoid the introduction of any prefixed
constraint neither for the number of allowed quanta in a
single mode nor for the number of simultaneously excited
vibrations and for the spectrum energy range. Moreover, an
automated procedure controls the spectrum convergence to
avoid unnecessary calculations, and it alerts the user when
incorrect settings might cause missing of important transi-
tions. Thanks to these characteristics the integrated approach
here presented can be applied to simulate in a fully automatic
manner any vibronic spectrum for systems where nonadia-
batic couplings are negligible and harmonic approximation
is reliable.

Our integrated approach starts with the computation of
the equilibrium geometries, frequencies, and normal modes
for both electronic states involved in the electronic transition.
A dedicated procedure performs reorientation of molecular
coordinates to minimize the effect of rotations between the
displaced equilibrium structures. After superposition of
molecular geometries, the requested vibrationally resolved
absorption or emission spectrum is generated. While the
presented computational tool is developed within the har-
monic approximation, it can be extended to take into account
anharmonic effects. As a first step in this direction a
correction scheme to derive excited state’s anharmonic
frequencies from ground-state data has been implemented.

In general, the accuracy of a simulated spectrum depends
on the quality of the description of both the initial and the
final electronic states of the transition. This is obviously
related to the proper choice of a well-suited computational
model: a reliable description of equilibrium structures,

harmonic frequencies, normal modes, and electronic transi-
tion energy is necessary. In this respect, the advantage of
the integrated approach we present here is the possibility of
combining various computational schemes to create user-
defined and/or problem-tailored approaches as for example
the refinement of the electronic transition energy at a higher
level of theory than the one used for the computation of
structures and frequencies. Moreover, if a stand-alone
software is used to compute the spectrum, some errors and/
or inaccuracies in computations may be introduced by data
processing and limited printing precision in the outputs of
the electronic structure codes. The integrated tool here
presented solves these problems by directly working with
machine precision data available inside the Gaussian com-
putational package. On the other side, the possibility of using
available visualization or data analyzing tools is strictly
related to the ease of use and accessibility of the approach
to the nonspecialists. The aforementioned advantages of an
integrated approach are illustrated with a few examples
showing simulations of absorption and emission spectra, all
in the UV-vis region, in the gas and condensed phases.

The paper is organized as follows. Section 2 describes the
general theoretical frame of computation of FC and
Herzberg-Teller spectra along with the details of the current
implementation. Computational models that have been ap-
plied to the determination of structures, vibrations, and
energies to provide the needed information for spectra
calculation are gathered in section 3. Section 4 reports the
application of this integrated tool to the simulation of: the
vibronically resolved S1r S0 absorption spectrum of anisole
(section 4.1), the photodetachment spectrum of SF6

- (section
4.2), the emission phosphorescence the spectrum of T1 f
S0 transition of chlorophyll c2 (section 4.3), the UV
absorption spectrum of n f π* transition of acrolein in gas
phase and in aqueous solution (section 4.4), and the photo-
electron spectra of the isolated adenine molecule and adenine
adsorbed on the Si(100) surface (section 4.5).

2. Spectra Calculation

2.1. Theory. In this section we briefly summarize the
general mathematical frame for the spectra computations.
The absorption spectrum, defined as the rate of energy
absorption by a single molecule per unit radiant energy
density is given by the expression8

σabs(ω)) 4π2ω
3 ∑

f

|〈Ψi|µ|Ψf〉 |
2δ(Ef -Ei - pω) (1)

On the same foot the emission spectrum in photon
counting experiments, defined as the rate of photon emission
due to a single molecule, is8

σem(ω)) 4ω3

3pc3∑
f

|〈Ψi|µ|Ψf〉 |
2δ(Ef -Ei + pω) (2)

The stick spectra in eqs 1 and 2 are usually convoluted
with a Lorentzian or a Gaussian to simulate homogeneous
or inhomogeneous broadening, respectively.

The intensity of a line of absorption or emission depends
therefore on the transition dipole moment integral 〈Ψi|µ|Ψf〉 ,
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where Ψi and Ψf are the molecular wave functions and µ is
the electric dipole moment.

In the Born-Oppenheimer approximation, the wave func-
tion of each state can be expressed as a product of a nuclear
ψn and an electronic ψe wave functions

〈Ψi|µ|Ψf〉 ) 〈ψnψe|µ|ψe
′ψn

′ 〉 (3)

The electric dipole moment can be separated into an
electronic part µe and a nuclear part µn. By replacement of
the electric dipole moment by these two components, the
transition dipole moment integral can be divided into two
terms

〈Ψi|µ|Ψf〉 ) 〈ψnψe|µe|ψe
′ψn

′ 〉 + 〈ψnψe|µn|ψe
′ψn

′ 〉 (4)

Because of the orthogonality of the electronic wave
functions of different electronic states, the second term of
the rhs in eq 4 vanishes. As a consequence, the transition
dipole moment integral depends on the nuclear wave
functions and on the electronic transition moment µif )
〈ψe|µe|ψ′e〉 . Equation 4 can then be written

〈Ψi|µ|Ψf〉 ) 〈ψn|µif|ψn
′ 〉 (5)

However, since no general analytical expression exists for
the electronic transition dipole moment, this integral must
be approximated. A first approach, proposed by Franck and
Condon16-18 is based on the assumption that molecular
geometry does not change significantly during the transition,
and therefore the electronic transition dipole moment can
be treated as a constant. While this approximation is known
to lead to very good results in many cases, it becomes not
satisfactory for the dipole-forbidden or weakly allowed
transitions. In these cases, one needs to improve the model
by expanding the transition dipole moment in a Taylor series
of the normal coordinates (either the set Q′ of the final state
or the set Q of the initial state). For computational reasons
that will become clear later we choose the expansion on Q′

µif(Q′)= µif(Q0
′)+∑

k)1

N ∂µif

∂Qk
′Qk

′+

1
2∑k)1

N

∑
l)1

N ( ∂
2µif

∂Qk
′
∂ Ql

′)
0

Qk
′Ql

′+ ... (6)

where Q′0 refers to the equilibrium geometry of the final
electronic state, while N is the number of normal modes.

In the current implementation we will consider the Taylor
expansion up to the second derivatives. The zero-order,
assuming that the transition dipole moment is unchanged
during the transition, is the FC approximation. The Herzberg-
Teller (HT) approximation corresponds to the development
at the first order. In this case, we take into account a limited
change in the structure during the transition.

Application of the Eckart conditions28 allows minimization
of the coupling between the rotational and vibrational
motions of the nuclei in a molecule and as much as possible
separate the nuclear wave function into rotational and
vibrational contributions. Then, switching to the Dirac
notation and assuming that the harmonic approximation can
be used to represent the vibrational wave function of the

initial and final states as eigenstates of the N-dimensional
harmonic oscillator, i.e., by defining |ψn〉 ) |V〉 and |ψn

′ 〉 )
|V′〉 , it is possible to write eq 5 as

〈Ψi|µ|Ψf〉 ) µif(Q0
′)〈V|V′〉 +∑

k)1

N (∂µif

∂Qk
′)

0

〈V|Qk
′|V′〉 +

1
2∑k)1

N

∑
l)1

N ( ∂
2µif

∂Qk
′
∂ Ql

′)
0

〈V|Qk
′Ql

′|V′〉 (7)

where µif has been replaced by its Taylor expansion given
in eq 6.

Computation of the overlap integrals between initial and
final vibrational states requires the use of a common
coordinates set. Duschinsky proposed a solution to this
problem by considering a linear transformation between the
normal modes of the initial state and the final state29

Q ′ ) JQ+K′ (8)

The Duschinsky matrix J describes the projection of the
normal coordinates basis vectors of the final state on those
of the initial state and represents the rotation of the normal
modes upon the transition. The shift vector K′ represents the
displacements of the normal modes between the initial state
and the final state structures.

Since J in principle is not diagonal, the calculation of the
vibrational overlap integrals is not straightforward, and
several methods were devised to compute the different terms
of the rhs of eq 7. Schematically, we can divide them into
two categories, analytical approaches30,31 and recursive
approaches.32-34 In our case both methodologies have been
employed, exploiting their respective advantages. Analytical
methods can quickly and accurately compute the transition
dipole moment integrals through ad hoc formulas, but the
latter need to be generated beforehand and individually coded
in the program to be truly efficient. As a consequence, the
possible transitions, in the sense of a particular combination
of quantum numbers for the initial state and final state, need
to be predicted. This task is really cumbersome and in
practice unfeasible when considering medium- or large-sized
molecules. Moreover, it is difficult to design general-purpose
programs based solely on this approach.

On the other side, recursive approaches provide methods
to compute the overlap between given initial and final states
through formulas that express it in terms of sums of integrals
involving states with lower vibrational quantum numbers.
Once the overlap between ground vibrational states has been
calculated directly, that of any other transition can be
obtained by recursively applying these formulas. While the
derivation of the latter formulas has been a prerequisite for
the calculation of the harmonic spectrum for a generic
system, additional conceptual and technical difficulties
remain to be faced with. First, in principle there is an infinite
number of possible transitions, and therefore some limitations
must be applied as will be described in section 2.2. Second,
while the need to avoid redundant calculations would suggest
to store each computed overlap integral, this strategy would
easily fail leading to a saturation of the computer memory,
and therefore efficient algorithms for their storage and/or
partial recomputation must be figured out.
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For many studied systems, the FC and HT approximations
are sufficient to correctly describe both absorption and
emission spectra, but for symmetry-forbidden transitions a
correct reproduction of intensity of weak bands may require
the inclusion of higher-order terms.35 Thus, as a first attempt
to deal with more general cases we will introduce also the
expansion to the second order of eq 6.

Recursion formulas for the overlap integrals between
vibrational states have been derived using several methods.34

Briefly, using second quantization, the terms 〈V|Q′|kV′〉 and
〈V|Q′kQ′ l|V′〉 can be expanded in simpler terms, and then the
second and third terms of rhs of eq 7 can be written as a
sum of overlap integrals

〈Ψi|µ|Ψf 〉 ) µif (Q0
′) 〈V|V ′ 〉 +

∑
k)1

N (∂µif

∂Qk
′)

0 � p

2ωk
′ [√Vk

′ 〈 V|V ′ -1k
′ 〉 + √Vk

′ + 1 〈V|V ′ + 1k
′ 〉]+

∑
k)1

N (∂
2µif

∂Qk
′2)

0

p

4ωk
′ [√Vk

′(Vk
′ - 1) 〈V|V ′ - 2k

′ 〉 +

(2Vk
′ + 1) 〈V|V ′ 〉 + √(Vk

′ + 1)(Vk
′ + 2) 〈V|V ′ + 2k

′ 〉]+

∑
k)1

N-1

∑
l)k+1

N ( ∂
2µif

∂Qk
′
∂Q1

′ )
0

p

2√ωk
′ωl

′
[√Vk

′Vl
′ 〈 V|V ′ -1k

′ - 1l
′〉 +

√Vk
′(Vl

′+ 1) 〈V|V ′ -1k
′ + 1l

′〉 + √(Vk
′ + 1)Vl

′ 〈 V|V ′ + 1k
′ - 1l

′〉 +

√(Vk
′ + 1)(Vl

′+ 1) 〈V|V ′ + 1k
′ + 1l

′〉] (9)

where |V′ + x′ l〉 is the vibrational state with all quantum
numbers equal to |V′〉 apart from mode l which has x′l quanta
more. In a recursive approach, when computing 〈V|V′〉 ,
〈V|V′ + 1′l〉 , 〈V|V′ + 2′l〉 , 〈V|V′ + 1′l - 1′k〉 , and 〈V|V′ + 1′l + 1′k〉
are not yet calculated and need to be expressed with respect
to integrals involving states with lower quanta. In those
electronic methods where the excited-state Hessian is
obtained by numerical derivatives of the analytical gradient
(with positive and negative increments), first derivatives as
well as diagonal second derivatives of the transition dipole
moment are automatically obtained. We have taken into
account both of them in our spectrum calculation (i.e., the
second and third terms in eq 9) in the spirit of using all the
available information provided by the electronic computa-
tional model.

2.2. Computational Strategy. The recursive approach
described in the previous section can be successfully applied
to the computation of spectra of medium-to-large molecular
systems. However, in many cases the number of overlap
integrals that must be taken into account can become
extremely large, with a consequent increase in the required
computational times and memory usage.

Efficient computational strategies must be able to indi-
viduate a priori the relevant transitions among the infinite
number of possible final states. A first simple scheme22,23

selects the transitions on the basis of their energy, considering
only those falling in a predetermined energy range (which
is in principle arbitrary). Such an approach is not effective
enough for large systems with broad spectra, and more robust
methods need to be devised. An estimation procedure should
work a priori, not require too many computations, and
correctly choose the relevant transitions. Several strategies

have been devised to decrease the number of required
calculations, while retaining the accuracy of the resulting
spectra.24,25,36,37 Here, we use an a priori method called
FCclasses,25,37 which provides very accurate vibrationally
resolved spectra of medium and large molecular systems with
limited computational resources. According to this method,
transitions are partitioned into classes Cn, depending on the
number n of simultaneously excited normal modes of the
final electronic state of the transition. The overlap integrals
for single vibrations (class C1) and combination of two
normal modes (class C2) are computed up to a chosen limit
(it can be also very large, since computation is cheap;
therefore any loss of accuracy in this step can be avoided).
The probabilities of all these transitions are stored and then
used in the computation of FC integrals for higher-order
classes to obtain a priori estimates of the maximum quantum
number that needs to be considered for each normal mode.
To that end, for each class the allowed transitions are chosen
iteratively on the ground of a minimum threshold for C1 and
C2 probabilities, so that the number of overlap integrals to
be computed stays approximatively below a user-defined
limit (NI

max), that rules the calculation accuracy (see ref 25
for further details). As we will show in the following, the
partition of transitions in “classes” Cn allows a breakthrough
in the spectrum calculation, since this latter quickly converges
with the increase of the class order n. From a technical point
of view, such partition is particularly appealing for a high-
efficiency implementation since it leads to a straightforward
parallelization of the calculations. Furthermore, separation
in classes allows for an easy control on the memory
requirements for storage of the overlap integrals used in
recursive procedures.

2.3. Convergence of the Spectra Computations. When
using an a priori method to selectively compute transitions,
a general issue to address is the evaluation of the convergence
of the calculations and hence of the reliability of their
outcome. In the calculation of vibrationally resolved spectra,
this can be easily done on the ground of analytical sum rules,
by comparing the actual computed spectrum intensity Itot

n to
the exact analytical limit Itot

a . In the current approach spectrum
convergence is always improved by increasing the limit for
the number of integrals computed for each class of transi-
tions: NI

max (MAXINT). A higher number of allowed transi-
tions obviously yields a better spectrum convergence but also
directly increases the required computational time and
memory usage.

Skipping prefactors and the dependence on the frequency,
the intensity of a given transition is equal to I(V, V′) )
|〈V|µif(Q′)|V′〉 |2 and summing over all the possible final states
one gets

Itot
a )∑

V ′
|〈V|µif(Q′)|V′〉 |2 ) ∑

F)x,y,z

〈V|µifF
2 (Q′)|V〉 (10)

where the superscript a indicates that the sum has been
carried out analytically by exploiting the closure relation.
In the limit of a complete inclusion of all the possible final
states the numerical sum of the state-to-state intensities
Itot

n ) ∑V′I(V, V′) must approach Itot
a , and the ratio C ) Itot

n /Itot
a

can be used as a control of the convergence, which is
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complete when C ) 1. It is possible that, for large systems,
a great number of transitions has to be considered to reach
convergence of the spectrum intensity, and calculations
although feasible can become computationally demanding.
On the other side, usually the main scope is to correctly
reproduce the spectrum line shape and assign the most
important vibronic transitions. It has been shown25,26,37 that
the spectrum line shape usually converges much faster than
C. The line shape convergence can be easily checked by
comparison of results calculated with two different thresholds
for NI

max.
For FC calculations eq 10 trivially gives |µif|2 and the

convergence only depends on the sum of FC factors |〈V|V′〉 |2,
which must tend to 1. For HT calculations it has been shown
in ref 37 that the integral in eq 10 is more easily evaluated
by expanding µif on the normal coordinates of the initial state
Q. By consideration of the cartesian component (F ) x, y or
z)

µifF(Q)= µifF(Q0)+∑
k)1

N ∂µifF

∂Qk
Qk ) µifF(Q0)+M1F

T Q (11)

where M1F is the vector of the dipole derivatives ∂µifF/∂Q.
Writing an analogous expression for the expansion as a
function of Q′

µifF(Q ′ )) µifF(Q0
′)+M1F

′ TQ′ (12)

and substituting eq 8 into eq 11 one gets

µifF(Q0)) µifF(Q0
′)+M1F

′ TK′ (13)

M1F
T )M1F

′ TJ (14)

These relations provide the data for the computation of
Itot

a

Itot
a ) |µif(Q0)|

2 +∑
k)1

N
p

2ωk
(2Vk + 1) ∑

F)x,y,z

M1kF
2 (15)

An analogous procedure can be followed to compute Itot
a

for an expansion of µif up to the second order. One has

µifF(Q)) µifF(Q0)+M1F
T Q+QTM2FQ) µifF(Q0

′)+

M1F
′ TQ ′ +Q′TM2F

′ Q ′ (16)

where

µifF(Q0)) µifF(Q0
′)+M1F

′ TK ′ +K′TM2F
′ K′ (17)

M1F
T )M′1F

T J+K′TM2F
′ J (18)

M2F ) JTM2F
′ J (19)

Now, by consideration of eq 10, expanding µif up to the
second order and taking into account that terms in Qk

n do
not contribute by symmetry if n is odd, one gets

Itot
a ) |µif(Q0)|

2 + 〈V|{∑
k

∑
F)x,y,z

[(2µifF(Q0)M2kkF +M1kF
2 )Qk

2 +

M2kkF
2 Qk

4]+ 2∑
k, l
k >l

∑
F)x,y,z

(M2kkFM2llF + 2M2klF
2 )Qk

2Ql
2}|V〉 (20)

It can be easily shown that

〈V|Qk
2|V〉 ) p

2ωk
(2Vk + 1) (21)

〈V|Qk
2Ql

2|V〉 ) p2

4ωkωl
(2Vk + 1)(2Vl + 1) (22)

〈V|Qk
4|V〉 ) p

2

4ωk
2
(6Vk

2 + 6Vk + 3) (23)

By substitution of eqs 21- 23 in eq 20, one finally obtains
the analytical sum for a second order expansion of µif

Itot
a ) |µif(Q0)|

2 +∑
k

∑
F)x,y,z

p
2ωk

×

[2µifF(Q0)M2kkF +M1kF
2 ](2Vk + 1) +

∑
k

∑
F)x,y,z

p2

4ωk
2
M2kkF

2 (6Vk
2 + 6Vk + 3) +

2∑
k, l
k >l

∑
F)x,y,z

p2

4ωkωl
(M2kkFM2llF +

2M2klF
2 )(2Vk + 1)(2Vl + 1)

(24)

In the current implementation we restrict ourselves to the
diagonal terms of the second derivative of µif, thus the last
term of eq 24 is not taken into account.

2.4. Anharmonic Corrections for the Ground and
Excited Electronic States. As already stated, the methods
outlined in previous sections are based on the harmonic
approximation. However, improving the accuracy of simu-
lated spectra requires going beyond harmonicity and taking
into account anharmonic effects, couplings between modes,
and vibrational or vibronic resonances. As a first step in this
direction, some of us introduced38 anharmonic corrections
to the vibrational frequencies of both ground and excited
electronic states. Here we briefly summarize a simple scheme
to derive excited-state mode-specific scaling factors starting
from the ground-state ones. These latter should be provided
by the user, e.g., from perturbative anharmonic frequency
calculations,39 or from easily accessible ground-state ex-
perimental data. For each particular normal mode Qk, the
frequency scaling vector R is computed first, using the
formula R(k) ) ν(k)/ω(k) where ν is the anharmonic
frequency and ω is the harmonic frequency. To proceed
further, we shall assume that, if there is a one-to-one relation
between the normal modes Qk and Q′k of the initial and final
state, the scaling factors Rk and R′k are equal. However, the
normal modes are in general not coincident (J * I), and R
cannot be transferred directly to scale the frequencies of the
final state. In other words, the scaling vector must be adapted
to the excited-state frequencies. In the case of small-
amplitude vibrations, this can be obtained by expressing the
normal modes of the excited state as linear combinations of
the normal modes of the initial state by means of the
Duschinsky transformation. The Jkl coefficients can now be
applied to derive the relation between the initial (k) and final
(l) state mode-specific anharmonicity scaling factors

Rl
′)∑

k

N

Jlk
2Rk (25)
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2.5. Implementation. The inclusion of vibronic computa-
tions in a general purpose electronic code (here Gaussian)
requires an effective control of the memory usage. However,
the storage of the overlap integrals for the recursion formulas
is often the main bottleneck in FC calculations, and by use
of a conventional method, keeping most integrals in an array
is quickly unviable when dealing with large systems. Taking
advantage of the capabilities of current computers, it is
possible to consider a semidirect method, storing only a
group of overlap integrals at a time. The computational costs
induced by the necessary recalculations are generally on par
with the times required to find a specific element in a large
array. The main problem of a semidirect approach is to devise
a consistent scheme to split the calculations of transition
dipole moment integrals in groups requiring only a moderate
need for recalculation in order to not hamper the efficiency
of the spectrum generation. In our implementation, we chose
to part the overlap integrals following a two-step procedure.
First, they are naturally divided in classes as described in
section 2.2. Second, each possible combination of n modes
defines a set belonging to class Cn, and only the integrals
calculated for a given set are stored at a time, thus dropping
the storage requirements.

This partition technique also allows the implementation
of several strategies to improve the efficiency of our
calculations. First, it is not necessary to work on the full-
dimensionality (N, the number of normal modes) Sharp and
Rosenstock matrices (A, B, C, D, E),30 and these latter,
together with the diagonal matrices of reduced frequencies,
can be replaced inside a given set by smaller matrices
containing only the elements required by the calculations.
The size of these new matrices, n for class Cn, is generally
much lower than N speeding up the search for specific
elements in these arrays. Additionally, the subdivision into
well-defined sets allows the tailoring of the storage of the
overlap integrals and their indexing. In fact, since the overlap
integrals to be computed for a given set are known in
advance, it is possible to choose a linear storage with a
particular indexing function adapted to it, boasting the
efficiency in retrieving a specific FC integral with respect
to what would be allowed by a generic storage technique.
Finally, different sets are independent, and therefore their
calculation can be tackled in parallel, improving greatly the
velocity of the spectrum simulation. Thanks to the double
partition, two levels of parallelization can be pursued, either
treating all the classes contemporaneously but their sets in
serial or treating even these latter simultaneously.

In our computational strategy we calculate by default the
intensities of the C1 and C2 transitions through analytical
formulas. Nonetheless, a recursive calculation can be adopted
also for these classes, if requested by the user. The present
computational tool is designed for large systems where it
may be necessary to take into account a large number of
simultaneously excited modes to adequately simulate the
spectra. Hence, a general method has been devised to let
the order n of the highest class be set by the user.

The general integrated procedure to compute an absorption
or emission spectrum is straightforward. As a first step the
geometry structures of both electronic states and the frequen-

cies of one of the two electronic states, by default the final
one, have to be determined. These computations have to be
performed beforehand and are stored in the internal check-
point files. In this way all data needed in subsequent steps
are extracted directly from internal files, and the accuracy
of results is not arbitrarily truncated. The suite of modules
dedicated to spectrum computations is integrated through a
ad hoc subprogram, which proceeds to the treatment of the
data available from previous calculations. Thus, the proce-
dure to compute the vibrationally resolved spectrum extracts
the stored data, and in a next step computes the frequencies
for the second electronic state (by default the initial one)
and the vibronic spectrum. When dealing with two structures
computed independently, spurious effects might be intro-
duced in the spectrum, if displacements due to translation
and rotation are not carefully dealt with. While translation
can be exactly removed by superposing the center of masses
of the two equilibrium structures, rotational effects can be
minimized by maximizing their mutual superposition. Our
subprogram checks the superposition of the equilibrium
structures and, if necessary, proceeds to their rotation and
translation. All necessary data, such as frequencies and
normal modes, are regenerated in this case.

The simplest computation of Franck-Condon spectrum
requires the following data:

(1) Cartesian coordinates of the atoms.
(2) Masses of the atoms.
(3) Energy of the ground and excited states.
(4) Frequencies for the two electronic states involved in

the transition.
(5) Normal modes for the two electronic states, expressed

by the atom displacements.
All of which are available from frequency calculations

performed for each electronic state. Additional data can be
needed depending on the requested calculation. For HT
calculations also the electronic transition dipole moment and
its derivatives are required. For TD-DFT method, these data
are directly available from the frequency calculations, since
they are performed by numerical differentiation of the
analytical TD-DFT energy gradients. If the electronic excited
states are calculated with methods adopting analytical second
derivatives by default, the numerical calculation of frequen-
cies must be requested together with the HT calculation.
Numerical derivatives of the transition dipole moment
provide at no additional cost the diagonal terms of the second
order of its Taylor expansion (see eq 6). Our method can
take into account also these data, to utilize all the available
information and maximize the accuracy of the computed
spectra. Other data are also required to apply the anharmonic
corrections. It is possible to provide anharmonic frequencies
for both electronic states or derive anharmonic corrections
for excited-state based on the ground-state data, as explained
in section 2.4. In both cases proper sets of frequencies need
to be included directly in the input for spectrum computation.
In this way it is possible to apply anharmonic corrections
by means of calculations performed beforehand (e.g., using
the perturbative approach)39 or making use of available (e.g.,
experimental) data. The spectrum convoluted with a Gaussian
function [with half-width at half-maximum (SPECHWHM)
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of 135 cm-1 by default] is generated as an outcome of
vibronic calculations (Lorentzian broadening can be intro-
duced as well). The assignment of vibronic transitions is
available through the corresponding overlap integrals that
are printed up to a chosen threshold (PRTINT), the transitions
with intensity larger than 1% of I(0, 0′) are printed out as
default. The convergence of the spectrum calculations and
the contribution of the classes are also reported together
with the requested matrices (e.g., J).

The parameters that rule spectra calculations can be
divided into two groups, the first being related to the
spectrum output as the convolution and its spectral range
and grid, etc., which can be freely chosen in a manner
appropriate for the problem under study. The second set of
parameters is related to the accuracy of the computed
spectrum. These are the maximum quantum number for each
mode in C1 and C2 integrals (MAXC1 and MAXC2,
respectively) and the maximum number of simultaneously
excited modes MAXBANDS, which all determine the
transitions to be computed, together with an additional
parameter NI

max (MAXINT). This latter limits an a priori and
computationally cheap estimate of the number of integrals
NI to be computed for each class (see ref 25). This quantity

is evaluated through the expression: NI ) NCn × 〈V′max〉n.
The binomial coefficient represents the number of combina-
tions of the n excited oscillators and 〈V′max〉 is the arithmetic
mean of the N maximum quantum numbers V′max. In the
following, for brevity, we will generically indicate NI

max as
the maximum number of integrals computed for each class.
An internal check procedure has been devised to monitor
computation convergence in order to prevent unnecessary
calculations but also to warn for the cases when transitions
to higher quanta need to be considered. Various aspects of
spectrum convergence with respect to these parameters are
discussed further in sections 4.2, 4.3, and 4.5.

3. Computational Chemistry Models

Full geometry optimizations and harmonic frequency cal-
culations have been performed for all systems under study
and in both final and initial electronic states. In some cases
anharmonic perturbative39 calculations have been performed
for the ground electronic state, and subsequently used to
account for anharmonicity in both S0 and S1 electronic states,
as described in section 2.4. The computational chemistry
methods have been chosen accordingly to the system under
study in order to find a satisfactory balance between
feasibility of calculations and accuracy of results. For anisole
molecule the ground and excited states computations have
been carried out using DFT and TD-DFT,19 respectively,
with thewell-knownB3LYPfunctional40andthe6-311+G(d,p)
basis set. For SF6 and its negative ion, computations have
been performed at the MP241 level with aug-cc-pVTZ basis
set.42,43 For chlorophyll c2 both singlet ground and triplet
excited electronic states have been calculated at the DFT
level with the PBE044 functional and 6-31G(d) basis set.
Solvent effects on the UV spectrum of acrolein have been
introduced by a model where the solute molecule is treated
explicitly by means of DFT with B3LYP functional and
N07D double-� basis set,45 and the continuum medium is
described by the CPCM.46 In the case of adenine molecule
adsorbed on Si(100) surface the ONIOM47 quantum me-

Figure 1. Computed TA (blue lines) and experimental REMPI55 (red dashed lines) spectra of the S1 r S0 transition of anisole
along with the assingment of the most intense bands; see ref 38 for the details.

Table 1. Convergence of Spectra Computations for
Adenine and Adenine@Si(100)a

adenine adenine@Si(100)

class (n) NCn progression NCn progression

3 9.14 × 103 84.54% 4.27 × 107 87.31%
4 8.23 × 104 93.57% 6.75 × 109 94.82%
5 5.76 × 105 97.48% 8.54 × 1011 97.37%
6 3.26 × 106 98.32% 8.98 × 1013 97.88%
7 1.54 × 107 98.39% 8.08 × 1015 97.93%

a For each class Cn the number of combinations of the n
excited oscillators NCn and spectrum progression are listed. The
C1 and C2 transitions have been computed by analytical formulae
allowing a maximum quantum number vi ) 30, and v1 ) v2 ) 20
(MaxC1 ) 30, MaxC2 ) 20) respectively. For the classes Cn, n g
3 the transitions to be computed have been selected setting the
parameter N I

max to 108 (the default value).

546 J. Chem. Theory Comput., Vol. 5, No. 3, 2009 Barone et al.



chanical/molecular mechanical (QM/MM) scheme has been
adopted with the Si(100) surface represented by a cluster of
119 silicon atoms. The QM part corresponding to the adenine
molecule has been calculated at the B3LYP/6-31+G(d,p)
level, while the cluster has been modeled by molecular
mechanics using the UFF force field.48 In the QM/MM
calculation, the MM part has been polarized taking into
account the interaction with the ground-state of the neutral
molecule or its cation, respectively. Moreover in some cases
the electronic energies of the initial and final electronic states
have been refined at the coupled cluster level.49-51 The
CCSD and EOM-CCSD calculations have been performed
with the MOLPRO52 package. All other calculations have
been performed with a locally modified version of the
Gaussian suite of quantum chemistry programs.53

4. Applications

The integrated approach to compute vibrationally resolved
optical spectra can be applied to a large variety of systems
ranging from small molecules in the gas phase to macro-
systems in condensed phases, whenever nonadiabatic cou-
plings are negligible and harmonic approximation is reliable.
The given examples of absorption spectrum of S1 r S0

electronic transitions of anisole, photodetachment spectrum
of SF6

-, emission T1 f S0 phosphorescence spectrum of
chlorophyll c2, UV spectrum of acrolein in the gas phase
and aqueous solution and a photoelectron spectra of adenine
adsorbed on the Si(100) surface, are chosen to illustrate the
flexibility of the present computational tool.

4.1. Vibrationally Resolved Optical Spectrum of
Anisole. The recently published vibrationally resolved
absorption spectrum of the S1r S0 electronic transitions of
anisole38 represents an example of the simulation accuracy
achievable when good quality geometries and force fields
for both electronic states are provided. The planarity of
anisole in both electronic states has been determined by the
high resolution laser-induced fluorescence (LIF) spectros-
copy.54 For anisole, methods based on the density functional
theory and its time-dependent extension for electronic excited
states [B3LYP/6-311+G(d,p) and TD-B3LYP/6-311+G(d,p)]
have been applied to geometry optimizations and harmonic
frequency calculations. The remarkable overall agreement
between theoretical and experimental54 rotational constants
(average deviation of about 0.5%, for both electronic states)
confirms good quality of the calculated geometry structures.
The relative energy of the electronic states has been refined

Figure 2. Theoretical electron photodetachment spectrum of SF6
-. (a) Full spectrum in a range from 0 to 5 eV calculated within

FC approximation with combinations between all modes considered; the energy of 0-0 transition is marked by an arrow. (b)
Comparison between the full spectrum (upper panel) and a spectrum with coupling between modes excluded (lower panel). (c)
Comparison between the full spectrum calculated with MAXC1 set to 100 (upper panel) vs the one with the maximum 20th
overtone considered (lower panel).
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by EOM-CCSD/CCSD//aug-cc-pVDZ computations. The
vibrational frequencies in the first excited electronic state
have been corrected according to the ground-state experi-
mental frequencies (EA) or to the calculated perturbative
anharmonic frequencies39 (TA). The spectrum has been
computed with the default choice of parameters yielding
99.6% of the total spectrum intensity. The simulated vibronic
profile convoluted with a fwhm of 2 cm-1 is compared to
the highly accurate experimental data from resonance-
enhanced multiphoton ionization (REMPI) spectrum55 in
Figure 1. On the whole, a very good agreement has been
achieved (the root-mean-square deviation between computed
and experimental bands is 15 cm-1), as detailed in ref 38.
To reproduce correctly the band intensities and the rich
vibrational structure of the REMPI spectra, it has been
necessary to account for changes in structure, vibrational
frequencies, and normal modes between the involved elec-
tronic states. It is worthwhile highlighting that the remarkable
overall agreement, also as far as band positions are con-
cerned, has only been possible by correcting the frequencies
for anharmonicity. The discrepancy between the absolute
position of experimental and simulated spectra remains the
main shortcoming of the purely theoretical approach: to
achieve a good match between spectra, the energy of the
electronic transition should be computed with an accuracy
of ∼10 cm-1. Thus, even if DFT/TD-DFT computations are
able to provide quite reasonable estimates of the relative
energetics of the electronic states (within 0.2 eV) and despite
the refinement based on coupled clusters calculations (0.05
eV), it was still necessary to compare spectra shifted to the
0-0 origin. Nevertheless, the remarkable agreement between
theoretical and experimental spectra allowed for revision of
some assignments of fundamental vibrations in the S1 state
of anisole. In particular, for many bands that had been
assigned to S1 fundamentals, consideration of the relative
intensities has suggested instead a different interpretation as
combinations or overtones.38

4.2. Photodetachment Spectrum of SF6
-. SF6

- represents
an interesting case of a relatively small and highly symmetric
system where accurate ab initio methodologies can be
applied, giving possibility for an easy computation of
accurate theoretical spectra which can be of great value for
the interpretation of the best available experimental spec-
troscopic data in the gas phase. The photodetachment
spectrum of SF 6

- is characterized by a broad progression,
with the band maximum shifted by more than 2 eV from
the 0-0 transition corresponding to the adiabatic electron
affinity (AEA). These features have been attributed to the
significant changes in the geometry between ionic and neutral
species.56,57 Indeed MP2/aug-cc-pVTZ calculations show a
significant elongation of the S-F bond upon electron
attachment (from 1.5750 to 1.7146 Å), while the molecule
octahedral symmetry remains unchanged. Moreover, the
theoretical [CCSD(T)/aug-cc-pVTZ] AEA of 1.06 eV is in
very good agreement with the experimental value of 1.0 eV.58

The fully theoretical photodetachment spectrum, calculated
in an energy range from 0 to 5.0 eV within the FC
approximation on the basis of the aforementioned ab initio
results (see Figure 2) clearly resembles its recently measured

experimental counterpart.56 For the SF6
- photodetachment

spectrum most of the vibrational progression derives from
excitation of the single totally symmetric S-F stretching
mode (ν1). Indeed, the computed spectrum shows a regular
pattern of bands, the most intense corresponding to ν1. Panel
b of Figure 2 shows a comparison between the spectrum
obtained with only the FC integrals from class C1 and the
complete spectrum, where couplings between all modes are
also taken into account. In the latter case it is found that the
weaker bands gain intensity from excitation of this totally
symmetric mode, being related to the combinations between
the overtones of ν1 and doubly excited degenerate mode ν4

or ν5. As a consequence of the large changes in the S-F
bond length, the most intense transitions are related to high
overtones, which must therefore be considered to reproduce
accurately the spectrum features. Our approach allows such
a flexibility, through the change of the MAXC1 parameter
to a user-defined value instead of the default value of 20.
Indeed in the latter case only about 30% of the spectrum
intensity has been achieved in comparison to 94% when all
necessary excitations have been taken into account. The
comparison of the spectra calculated with MAXC1 set to
100 and to 20 is shown on panel c) of Figure 2.

4.3. Phosphorescence Spectrum of Chlorophyll c2.
Despite ongoing experimental and theoretical research, the
understanding of the molecular mechanism of light harvesting
in photosystem II is not yet satisfactory. Quantum chemical
computations of optical properties combined with spectro-
scopic experiments can undoubtedly contribute to shed
further light on this phenomenon.59 The triplet states of
chlorophylls are of particular interest due to their dual
photodamage and photoprotective role in photosystem II.60

Chlorophyll c2 (see Figure 3) is a large molecule with 73
atoms and 213 normal modes. Its T1f S0 phosphorescence
spectrum has been chosen to demonstrate various aspects
related to spectrum convergence and applicability of the
integrated approach. More detailed studies of spectra of
photosynthetic pigments are planned in future works. The

Figure 3. Structure of chlorophyll c2.
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main factor which rules the accuracy of the calculations is
the maximum number of integrals which are computed.
Higher number of allowed transitions obviously improves
the spectrum quality but at the same time strongly increases
the required computational times and memory usage. For
larger systems it becomes crucial to select only the most
important transitions. In the present approach transitions are
partitioned in classes, and the pool of C1 and C2 transitions
is used to estimate a priori the maximum quantum number
that has to be considered for each mode (see section 2.2) in
order to keep the number of integrals computed for each
class within the limit determined by MAXINT. This proce-
dure has been proved to be very cost-effective.25,26,37 Panel
a of Figure 4 shows the spectrum convergence with classes
calculated with MAXINT set to 1011, while the spectrum
convergence with increase of MAXINT (from 102 to 1012)
is depicted on panel b. As expected, a very small number of
integrals is not sufficient and leads only to about half of the
spectrum intensity. Moreover, even as many as 1012 integrals
cannot provide the full convergence of spectrum intensity
(C). On the other hand it is apparent that the contribution of
classes higher than C5 decreases steeply and that the
difference in spectrum intensity calculated up to C7 and up
to C6 is smaller than 1%, confirming spectrum convergence
with respect to classes.

Nevertheless, in most cases the convergence of the
spectrum line shape is much faster25 than the full conver-
gence of the total spectrum intensity. This fact is particularly

encouraging for large systems like chlorophyll c2. Figure 5
compares spectrum line shapes calculated with MAXINT set
to 102, 106, and 109. It is clear that the main spectral features
are well reproduced even if total spectrum intensity is far
from convergence. The spectra calculated with MAXINT )
109 or larger are identical on this scale. Thus, inspection of
the spectrum line shape indicates that the most important
transitions have been taken into account, and that reliable
spectra have been computed already with NI

max set to 109.
The analysis of classes contributions to the total spectrum
(Figure 6) shows that most of the spectrum bands are
composed from classes up to C4, with C1 and C2 influencing
most the spectrum line shape. Contributions of the classes
related to the simultaneous excitation of five and more modes
are much flatter and of little importance for the spectrum
line shape, although they are not negligible for the spectrum
intensity. The present case of chlorophyll turns out to be
much more challenging than that adopted as a benchmark
by Dierksen et al.24 and Jankowiak et al.,27 a very large
polycyclic aromatic hydrocarbon (PAH) derivative with 462
normal modes. Such PAH has a rather narrow photoelectron
spectrum, and our method is able to converge it up to values

Figure 4. Convergence of the spectrum calculation for
chlorophyll c2 with classes (upper panel) and with the
maximum number of integrals MAXINT set for each class
(lower panel). For spectrum convergence with classes the total
convergence up to class Cn is shown as red blocks, while
contribution of class Cn is shown in blue.

Figure 5. Convergence of the spectrum calculation for
chlorophyll c2 with the threshold on the number of computed
integrals. Comparison of spectrum shape calculated with
MAXINT set to 102 (dashed red line) and 109 (solid blue line)
is shown on upper panel, while the onset with spectra
calculated with MAXINT set to 102, 106 (fine-dashed black
line), and 109 is shown on lower panel.
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of C larger than 0.99. These tests show that our methodology
can satisfactorily compute converged spectra also for large
challenging systems. When the interest is focused on the
high-energy wing of the spectrum (the one suffering of the
largest relative error) as for instance for computation of
nonradiative transition rates, a careful check of convergence
in that energy region must be performed and purposely
tailored methods may result more suitable.

4.4. UV Spectrum of Acrolein in the Gas Phase and
Aqueous Solution. The UV absorption spectrum of acrolein
has attracted significant attention since this molecule exhibits
two conjugated chromophores CdC and CdO, a common
feature for many natural systems. In particular, a blueshift
of the nf π* transition of the CdO group has been observed
in going from gas phase to aqueous solution.61 Our integrated
approach allows a straightforward computation of the gas
phase and aqueous solution absorption spectra of acrolein,
giving direct insights into the experimentally observed effect.
The structures and frequencies of acrolein have been
determined by DFT/TD-DFT computations with the B3LYP
functional and N07D polarized double-� basis set, both in
gas phase and in aqueous solution. The effect of water solvent
has been included by means of the polarizable continuum

model, where the solvent is represented by a homogeneous
dielectric polarized by the solute, placed within a cavity built
as an envelope of spheres centered on solute atoms.46 The
solvent is described in the nonequilibrium limit where only
its fast (electronic) degrees of freedom are equilibrated with
the excited-state charge density while the slow (nuclear)
degrees of freedom remain equilibrated with the ground state.
This assumption is sufficient to describe absorption spectrum
in solution, because of the different time scales of the
electronic and nuclear response components of the solvent
reaction field.25 To simulate the spectrum line-shape it is
necessary to convolute the stick-spectrum with a Gaussian

Figure 6. Convergence of the spectrum calculation for
chlorophyll c2 with classes; contributions of specific classes
are compared with total spectrum (see legend). Classes
C0-C4 are shown on upper panel, while the onset with
contribution of classes C1-C5 is shown on lower panel.
Contribution of higher classes are not visible in this scale.

Figure 7. Theoretical absorption UV spectra of n f π*
electronic transition of acrolein. (a) Gas phase spectrum in a
range from 2.5 to 5 eV calculated within FC approximation
with fwhm of 500 (red line) and 1000 cm-1 (blue dashed line).
(b) Comparison between gas-phase spectra calculated within
either the FC (blue dashed line) or the FC-HT approximations
(pink line). (c) Comparison between calculated spectra for
acrolein in gas phase (pink line) and in water solution
described by the CPCM model (black dashed line).
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with an appropriate full-width at the half-maximum (fwhm):
panel a of Figure 7 compares spectra calculated with the
values of the fwhm set to 500 and 1000 cm-1. For acrolein
the latter choice better reproduces the broad structure of the
experimental spectrum. In the present approach it is possible
to improve the FC spectrum by considering changes of the
transition dipole moment with the geometry. It is worth
mentioning that in the present case inclusion of the HT term
does not require any additional quantum mechanical com-
putation, since the TD-DFT frequencies are calculated
numerically giving direct access to the necessary derivatives
of the transition dipole moment with respect to the normal
coordinates of the excited electronic state. Inclusion of the

HT term is particularly important for dipole forbidden or
weakly allowed transitions where the FC approximation is
unreliable. This is the case of the weakly dipole allowed n
f π* transition of acrolein (µ ) 0.0463 au), where the HT
contribution indeed influences significantly the spectrum line-
shape, as shown by the comparison of the FC and FC-HT
spectra on panel b of Figure 7. Both the FC and the FC-HT
spectra are fully converged (100.0%) to their respective limits
(see section 2.3). The FC-HT spectra calculated in the gas
phase and in the aqueous solution are compared in panel c
of Figure 7. It is evident that not only the solvent shift is
well reproduced by the theory but that also changes in the
band shapes agree with the recent results obtained with a

Figure 8. Assignment of the main bands of the theoretical absorption UV spectrum of n f π* electronic transition of acrolein
in gas phase. Solid line reports the spectrum in a range of 24000-40000 cm-1 calculated within FC-HT approximation with
fwhm of 1000 cm-1. The main stick bands are assigned as nx where n is the excited normal mode and x its quantum number.

Figure 9. Adenine adsorbed on a cluster of 119 silicon atoms, modeling the Si(100) surface.
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more accurate but computationally demanding time-domain
approach.61 Moreover, the present method works directly in
the frequency domain, so that all the individual vibronic
contributions to the total spectrum are computed and can be
easily assigned, as shown in Figure 8. We foresee that the
accessibility to an easy and straightforward method for the
computations of vibrationally resolved spectra within the
integrated approach here described, may lead to break-
throughs in the studies of UV-vis spectra in condensed
phases.

4.5. Photoelectron Spectrum of Adenine Adsorbed
on Si(100). Reliable computational studies of optical proper-
ties for large nanosystems in condensed phases can support
the design of new materials relevant for optics, photonics,
and sensoristics. Our approach is in line with such a demand
as illustrated by simulation of the photoelectron spectrum
of adenine adsorbed on Si(100) surface. The full valence
photoelectron spectrum of adenine is composed from several
overlapping excitations.62 The present work is aimed to show
feasibility of spectra simulations for nanosystems; thus only
ionization from the highest occupied molecular orbital

(HOMO) has been considered. The Si(100) surface has been
modeled by a cluster of 119 silicon atoms, shown in Figure
9, resulting in a total system with 636 normal modes. For
computation of geometry structures and frequencies the
ONIOM QM/MM scheme has been adopted. The photoelec-
tron spectra have been calculated for both isolated adenine
molecule and adenine@Si(100), putting into evidence spec-
trum changes upon adsorption. Both spectra are plotted in
the range of 8.0-8.7 eV roughly corresponding to the first
band of valence shell photoelectron spectrum. Figure 10
shows the spectra both in the absolute energy scale and in a
relative scale where the 0-0 transition is set to zero. It can
be seen that adsorption on Si surface yields a small red shift
of the excitation origin, while new vibronic transitions
corresponding to intermolecular vibrations modulate the
spectrum line shape. It is interesting to analyze the number
of combinations for each class Cn for such a large system,
which is directly related (see section 2.5) to the number of
transitions to compute, and investigate the efficiency of the
adopted selection procedure. Table 1 lists NCn for isolated
adenine and adenine@Si(100) and the spectrum intensity

Figure 10. Comparison between the theoretical FC photoionization spectra in gas phase of isolated adenine (blue dashed line)
and adenine adsorbed on a Si(100) surface (solid red line): (a) Spectra in an absolute energy range from 8.0 to 8.7 eV calculated
within FC approximation with fwhm ) 100 cm-1. (b) Spectra shifted to the relative origins of the 0-0 electronic transitions,
isolated molecule (upper panel), and adenine@Si(100) (lower panel); the stick bands show the most important transitions.
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achieved with MAXINT set to the default value 108. It is
noteworthy that in both cases, either an isolated molecule
with 39 normal modes or a macrosystem with over 600,
almost all spectrum intensity (about 98%) has been recovered
at an equivalent computational cost. For the cluster, the
default value of MAXINT is not sufficient to consider the
whole initial pool even for only three simultaneously excited
modes (C3 class). This particular case shows the ability of
the a priori strategy to select only the relevant transitions
and discard the less probable ones.

Conclusions

A general approach for simulation of absorption and emission
vibronic spectra has been implemented and applied to a
variety of molecular systems, showing the high flexibility
of the developed computational tool. The integration of all
procedures within the same computational package allows
for the fully automatic computation of vibrationally resolved
optical spectra. Despite the fact that our computational
scheme has been tailored for large systems, it can be utilized
as well to generate high quality spectra for small systems,
when nonadiabatic and anharmonic couplings are negligible,
since it does not imply unnecessary approximations. More-
over, good quality spectra can be effectively computed even
for large systems with hundreds of normal modes, paving
the route to spectroscopic studies of systems of direct
biological and/or technological interest.

It has been demonstrated that a very good agreement
between the computed and experimental vibrationally re-
solved REMPI spectra can be achieved, when good accuracy
geometries and force fields are determined for the ground
and excited electronic states, for example, for the case of
anisole. It is worthwhile highlighting that the remarkable
overall agreement, also as far as band positions are con-
cerned, has been achieved only through the correction of
the frequencies for anharmonicity. The accuracy and ef-
fectiveness of our a priori procedure for the selection of the
relevant transitions has been shown by comparison of the
photoelectron spectra computed for isolated adenine and for
adenine adsorbed on silicon surface. Despite significant
difference in the systems size, in both cases the electronic
transition is localized on adenine molecule. The implemented
scheme indeed effectively chooses the relevant transitions,
providing an equivalent computational cost for spectra
computations for isolated molecule and adenine@Si(100).
Spectrum quality has been discussed on the example of
chlorophyll c2 showing that line shape converges much faster
than spectrum intensity. The former, which provides all
necessary information for most important transitions, is
usually the actual interesting property. Thus, reliable com-
putations for large systems can be performed with relatively
small computational cost. Overall, we hope that the tool here
presented to compute vibrationally resolved optical spectra,
together with its integration into a computational chemistry
package, will routinely allow detailed analyses of UV-vis
spectra, improving their interpretation and understanding.
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Abstract: CCSDR(3) calculations of vertical excitation energies are reported for a set of 24
molecules and 121 excited valence singlet states from a recently published benchmark of organic
molecules. The same geometries (MP2/6-31G*) and basis set (TZVP) were employed as in
our previous linear response CC2, CCSD, and CC3 calculations. The CCSDR(3) results are
compared against the CCSD and CC3 results. Statistical evaluation of all CCSDR(3) excitation
energies gives mean absolute deviations of 0.09 eV from CC3 and 0.30 eV from CCSD. For
excited states, which are dominated by single excitations, the absolute mean deviation from
CC3 is reduced to 0.02 eV and the maximum deviation is 0.09 eV. CCSDR(3) is thus a very
cost-effective accurate alternative to CC3.

1. Introduction

In two recent studies1,2 we have presented a benchmark set
for the calculation of electronically excited states. This set
comprises unsaturated aliphatic hydrocarbons (including
polyenes and cyclic compounds), aromatic hydrocarbons and
heterocycles, carbonyl compounds, and nucleobases. It
consists of 28 medium size organic molecules with a total
of 223 excited states (152 singlet and 71 triplet states) and
is intended to cover the most important chromophores in
organic photochemistry.

In the first study1 calculations were performed with a series
of linear response coupled cluster methods (CC2, CCSD,
CC3)3-15 and with multistate complete-active-space second-
order perturbation theory (MS-CASPT2).16-18 Based on
these results and other high-level literature data, best
theoretical estimates were chosen for the majority of the
studied vertical excitation energies. The comparison of
coupled cluster and multireference results showed that CC3
and CASPT2 excitation energies are in excellent agreement

for states which are dominated by single excitations and that
CC2 performs on average better than CCSD.

In the second study2 we have investigated the performance
of time-dependent density functional theory (TD-DFT) with
three functionals (BP86, B3LYP, and BHLYP) and DFT-
based multireference configuration interaction (DFT/MRCI)
methods.

Møller-Plesset perturbation theory19-29 and coupled
cluster theory-based3-15,26-30 response theory methods such
as CC313-15 are suitable for states with low double excitation
contributions. However, CC3 formally scales as N7 with the
number of orbitals N, and the high computational cost in
the iterative treatment of the triple excitations in CC3 restricts
its application to small systems and/or small basis sets.
Looking for a computationally cheaper but comparably
accurate approach, Christiansen and co-workers31,32 have
presented the CCSDR(3) method, in which a noniterative
triples correction is added to the linear response CCSD
excitation energy. In this respect, CCSDR(3) is analogous
to the CCSD(T) method33 which is so successful for ground-
state energies. Both methods include fourth-order terms. In
CCSDR(3) the reference singles and doubles amplitudes as
well as the energies of single excitation dominated states

* Corresponding author e-mail: sauer@kiku.dk.
† University of Copenhagen.
‡ Max-Planck-Institut für Kohlenforschung.
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Table 1. Vertical Singlet Excitation Energies ∆E (eV)

molecule state CCSD (% R1)a ref 1 CCSDR(3) (∆)b this work CC3 (% R1)a ref 1

ethene 11B1u (πfπ*) 8.51 (97.2) 8.36 (-0.01) 8.37 (96.9)
E-butadiene 11Bu (πfπ*) 6.72 (95.5) 6.56 (-0.02) 6.58 (93.7)

21Ag (πfπ*) 7.42 (85.8) 6.95 (0.18) 6.77 (72.8)
all-E-hexatriene 11Bu (πfπ*) 5.72 (95.0) 5.56 (-0.02) 5.58 (92.6)

21Ag (πfπ*) 6.61 (84.7) 6.04 (0.32) 5.72 (65.8)
all-E-octatetraene 21Ag (πfπ*) 5.99 (85.4) 5.40 (0.43) 4.97 (62.9)

11Bu (πfπ*) 5.07 (94.7) 4.93 (-0.01) 4.94 (91.9)
21Bu (πfπ*) 6.89 (81.3) 6.91 (0.30) 6.06 (58.5)
31Ag (πfπ*) 6.98 (92.0) 6.72 (0.23) 6.50 (71.6)
41Ag (πfπ*) 7.05 (89.9) 7.01 (-0.05) 6.81 (92.1)
31Bu (πfπ*) 8.15 (94.6) 7.95 (0.03) 7.91 (91.9)

cyclopropene 11B1 (σfπ*) 6.96 (94.5) 6.89 (-0.01) 6.90 (93.0)
11B2 (πfπ*) 7.24 (96.3) 7.10 (0.00) 7.10 (95.5)

cyclopentadiene 11B2 (πfπ*) 5.87 (95.7) 5.72 (-0.01) 5.73 (94.3)
21A1 (πfπ*) 7.05 (89.4) 6.76 (0.14) 6.61 (79.3)
31A1 (πfπ*) 8.95 (95.8) 8.72 (0.02) 8.69 (93.1)

norbornadiene 11A2 (πfπ*) 5.80 (95.3) 5.65 (0.01) 5.64 (93.4)
11B2 (πfπ*) 6.69 (94.5) 6.51 (0.02) 6.49 (91.9)
21B2 (πfπ*) 7.87 (95.5) 7.65 (0.01) 7.64 (93.8)
21A2 (πfπ*) 7.87 (95.0) 7.73 (0.02) 7.71 (93.0)

benzene 11B2u (πfπ*) 5.19 (90.5) 5.12 (0.04) 5.07 (85.8)
11B1u (πfπ*) 6.74 (95.6) 6.70 (0.02) 6.68 (93.6)
11E1u (πfπ*) 7.65 (94.5) 7.45 (0.00) 7.45 (92.2)
21E2g (πfπ*) 9.21 (84.9) 8.71 (0.29) 8.43 (65.6)

naphthalene 11B3u (πfπ*) 4.41 (90.5) 4.34 (0.07) 4.27 (85.2)
11B2u (πfπ*) 5.21 (94.3) 5.08 (0.05) 5.03 (90.6)
21Ag (πfπ*) 6.23 (90.1) 6.09 (0.11) 5.98 (82.2)
11B1g (πfπ*) 6.53 (91.4) 6.26 (0.20) 6.07 (79.6)
21B3u (πfπ*) 6.55 (93.9) 6.35 (0.02) 6.33 (90.7)
21B1g (πfπ*) 6.97 (93.8) 6.81 (0.02) 6.79 (91.3)
21B2u (πfπ*) 6.77 (93.8) 6.60 (0.03) 6.57 (90.5)
31Ag (πfπ*) 7.77 (88.4) 7.29 (0.39) 6.90 (70.0)
31B2u (πfπ*) 8.77 (93.5) 8.53 (0.08) 8.44 (87.9)
31B3u (πfπ*) 9.03 (84.1) 8.50 (0.38) 8.12 (58.7)

furan 11B2 (πfπ*) 6.80 (94.9) 6.64 (0.04) 6.60 (92.9)
21A1 (πfπ*) 6.89 (90.8) 6.71 (0.09) 6.62 (84.9)
31A1 (πfπ*) 8.83 (94.2) 8.57 (0.04) 8.53 (90.7)

pyrrole 21A1 (πfπ*) 6.61 (91.2) 6.47 (0.07) 6.40 (86.0)
11B2 (πfπ*) 6.87 (94.2) 6.74 (0.03) 6.71 (91.6)
31A1 (πfπ*) 8.44 (93.7) 8.20 (0.04) 8.17 (90.2)

imidazole 11A′′ (nfπ*) 7.01 (92.4) 6.87 (0.05) 6.82 (87.6)
21A′ (πfπ*) 6.80 (92.0) 6.64 (0.06) 6.58 (87.2)
31A′ (πfπ*) 7.27 (93.1) 7.15 (0.05) 7.10 (89.8)
21A′′ (nfπ*) 8.15 (93.3) 7.98 (0.05) 7.93 (89.4)
41A′ (πfπ*) 8.70 (92.7) 8.49 (0.04) 8.45 (88.8)

pyridine 11B2 (πfπ*) 5.27 (90.6) 5.20 (0.05) 5.15 (85.9)
11B1 (nfπ*) 5.25 (92.8) 5.12 (0.07) 5.05 (88.1)
11A2 (nfπ*) 5.73 (92.4) 5.55 (0.05) 5.50 (87.7)
21A1 (πfπ*) 6.94 (95.3) 6.88 (0.03) 6.85 (92.8)
31A1 (πfπ*) 7.94 (94.2) 7.72 (0.01) 7.70 (91.5)
21B2 (πfπ*) 7.81 (93.5) 7.61 (0.02) 7.59 (89.7)
41A1 (πfπ*) 9.45 (89.5) 9.00 (0.33) 8.68 (74.1)
31B2 (πfπ*) 9.64 (84.4) 9.09 (0.32) 8.77 (65.2)

pyrazine 11B3u (nfπ*) 4.42 (93.4) 4.31 (0.06) 4.24 (89.9)
11Au (nfπ*) 5.29 (92.7) 5.11 (0.06) 5.05 (88.4)
11B2u (πfπ*) 5.14 (90.8) 5.07 (0.05) 5.02 (86.2)
11B2g (nfπ*) 6.02 (92.1) 5.86 (0.12) 5.74 (85.0)
11B1g (nfπ*) 7.13 (90.8) 6.86 (0.11) 6.75 (83.8)
11B1u (πfπ*) 7.18 (95.6) 7.10 (0.03) 7.07 (93.3)
21B1u (πfπ*) 8.34 (93.9) 8.09 (0.03) 8.06 (90.9)
21B2u (πfπ*) 8.29 (93.2) 8.08 (0.03) 8.05 (89.7)
11B3g (πfπ*) 9.75 (83.5) 9.16 (0.39) 8.77 (61.1)
21Ag (πfπ*) 9.55 (89.1) 9.04 (0.35) 8.69 (74.2)

pyrimidine 11B1 (nfπ*) 4.70 (92.7) 4.56 (0.06) 4.50 (88.4)
11A2 (nfπ*) 5.12 (92.6) 4.97 (0.05) 4.93 (88.2)
11B2 (πfπ*) 5.49 (90.5) 5.42 (0.05) 5.36 (85.7)
21A1 (πfπ*) 7.17 (94.8) 7.10 (0.04) 7.06 (92.2)
21B2 (πfπ*) 8.24 (93.8) 8.02 (0.02) 8.01 (90.7)
31A1 (πfπ*) 7.97 (93.5) 7.77 (0.03) 7.74 (89.7)

pyridazine 11B1 (nfπ*) 4.11 (93.1) 3.99 (0.07) 3.92 (89.0)
11A2 (nfπ*) 4.76 (92.0) 4.57 (0.08) 4.49 (86.6)
21A1 (πfπ*) 5.35 (90.2) 5.28 (0.06) 5.22 (85.2)
21A2 (nfπ*) 6.00 (92.1) 5.84 (0.10) 5.74 (86.6)
21B1 (nfπ*) 6.70 (92.0) 6.49 (0.08) 6.41 (86.6)
11B2 (πfπ*) 7.09 (94.7) 6.99 (0.07) 6.93 (90.7)
21B2 (πfπ*) 7.79 (93.8) 7.58 (0.04) 7.55 (90.2)
31A1 (πfπ*) 8.11 (93.8) 7.86 (0.04) 7.82 (90.5)
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are correct to third order whereas the reference triples
amplitudes and the energies of double excitation dominated
states are correct to second order exactly as in CC3.31,32

While the computational scaling of CCSDR(3) is of the same
order as in CC3, the N7 step is noniterative in CCSDR(3),

which implies a much smaller prefactor and therefore
significant computational savings. Formally CCSDR(3) is
based on a pseudoperturbation theory expansion of the CC3
eigenvalue problem and therefore bears some similarity to
the CIS(D)34 and RPA(D)21,23 methods, which are based on

Table 1. Continued

molecule state CCSD (% R1)a ref 1 CCSDR(3) (∆)b this work CC3 (% R1)a ref 1

s-triazine 11A1
′′ (nfπ*) 4.96 (92.3) 4.81 (0.04) 4.78 (88.0)

11A2
′′ (nfπ*) 4.98 (92.5) 4.83 (0.07) 4.76 (88.0)

11E′′ (nfπ*) 5.01 (92.5) 4.87 (0.05) 4.81 (88.1)
11A2

′ (πfπ*) 5.84 (90.2) 5.76 (0.06) 5.71 (85.1)
21A1

′ (πfπ*) 7.51 (93.7) 7.44 (0.03) 7.41 (90.8)
21E′’ (nfπ*) 8.19 (90.9) 7.95 (0.15) 7.80 (88.1)
11E′ (πfπ*) 8.28 (93.7) 8.07 (0.02) 8.04 (88.8)
21E′ (πfπ*) 10.24 (91.2) 9.89 (0.46) 9.44 (74.3)

s-tetrazine 11B3u (nfπ*) 2.71 (93.2) 2.61 (0.08) 2.53 (89.6)
11Au (πfπ*) 4.07 (92.2) 3.88 (0.08) 3.79 (87.5)
11B1g (nfπ*) 5.32 (91.7) 5.15 (0.18) 4.97 (82.5)
11B2u (πfπ*) 5.27 (90.0) 5.20 (0.08) 5.12 (84.6)
11B2g (nfπ*) 5.70 (90.7) 5.51 (0.17) 5.34 (80.7)
21Au (nfπ*) 5.70 (92.5) 5.56 (0.10) 5.46 (87.4)
21B2g (nfπ*) 6.76 (90.1) 6.43 (0.20) 6.23 (79.2)
21B1g (nfπ*) 7.25 (91.1) 6.98 (0.11) 6.87 (84.7)
31B1g (nfπ*) 8.36 (86.9) 7.60 (0.52) 7.08 (63.2)
21B3u (nfπ*) 6.99 (93.2) 6.77 (0.10) 6.67 (86.7)
11B1u (πfπ*) 7.66 (94.9) 7.54 (0.09) 7.45 (91.0)
21B1u (πfπ*) 8.06 (93.4) 7.83 (0.04) 7.79 (90.2)
21B2u (πfπ*) 8.88 (93.2) 8.58 (0.07) 8.51 (87.7)
21B3g (πfπ*) 9.44 (84.3) 8.86 (0.39) 8.47 (63.6)

formaldehyde 11A2 (nfπ*) 3.97 (93.4) 3.94 (0.00) 3.95 (91.2)
11B1 (σfπ*) 9.26 (93.4) 9.19 (0.00) 9.18 (90.9)
21A1 (πfπ*) 10.54 (94.4) 10.43 (-0.02) 10.45 (91.3)

acetone 11A2 (nfπ*) 4.43 (93.4) 4.39 (0.00) 4.40 (90.8)
11B1 (σfπ*) 9.26 (93.8) 9.17 (0.01) 9.17 (91.5)
21A1 (πfπ*) 9.87 (93.5) 9.66 (0.01) 9.65 (90.1)

p-benzoquinone 11Au (nfπ*) 3.19 (91.7) 3.01 (0.16) 2.85 (83.0)
11B1g (nfπ*) 3.07 (92.0) 2.90 (0.15) 2.75 (84.1)
11B3g (πfπ*) 4.93 (92.7) 4.69 (0.11) 4.59 (87.9)
11B1u (πfπ*) 5.89 (92.5) 5.65 (0.03) 5.62 (88.4)
11B3u (nfπ*) 6.55 (91.0) 6.09 (0.27) 5.82 (75.2)
21B3g (πfπ*) 7.62 (91.0) 7.36 (0.08) 7.27 (83.8)
21B1u (πfπ*) 8.47 (91.7) 8.10 (0.28) 7.82 (68.6)

formamide 11A′′ (nfπ*) 5.66 (93.6) 5.65 (-0.01) 5.65 (90.7)
21A′ (πfπ*) 8.52 (92.9) 8.30 (0.03) 8.27 (87.9)
31A′ (πfπ*) 11.34 (92.7) 11.06 (0.13) 10.93 (86.6)

acetamide 11A′′ (nfπ*) 5.71 (93.5) 5.69 (-0.01) 5.69 (90.6)
21A′ (πfπ*) 7.85 (92.8) 7.69 (0.02) 7.67 (89.1)
31A′ (πfπ*) 10.77 (93.0) 10.56 (0.06) 10.50 (88.7)

propanamide 11 A′′ (nfπ*) 5.74 (93.6) 5.71 (-0.01) 5.72 (90.6)
21A′ (πfπ*) 7.80 (93.0) 7.64 (0.02) 7.62 (89.2)
31A′ (πfπ*) 10.34 (93.3) 10.13 (0.06) 10.06 (89.0)

a Weight of the single excitations in the coupled cluster calculations. b Difference between CCSDR(3) and CC3 results (in parenthesis).

Figure 1. Correlation plots for all calculated singlet excited states: Coupled cluster vertical excitation energies.
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the corresponding expansion of the CC23,4 or second-order
polarization propagator approximation (SOPPA)19,20,22,24,25

eigenvalue problem.
CCSDR(3) calculations have previously been carried out

for a number of small31,32,35-37 and medium size36,38-45

molecules; however, a systematic comparison with CC3 and
CCSD has not yet been published. In this article we present
such a study for singlet excitation energies using our recently
published benchmark set.1 We have calculated CCSDR(3)
excitation energies for 121 excited valence singlet states in
24 molecules, i.e. all the singlet states from the benchmark
set for which CC3 results are available.1 The new CCSDR(3)
results are compared with the previously published CCSD
and CC3 data. On the basis of a statistical evaluation of our
results, we derive rules of thumb for the accuracy of the
noniterative triples correction of CCSDR(3) relative to the
iterative correction in CC3.

Although this study is only concerned with the question
of how well CCSDR(3) with its noniterative triples correction
is able to reproduce the results of CC3 calculations, we
emphasize that CCSDR(3) is by no means the only method
which includes noniterative triples corrections in the calcula-
tion of excitation energies. Several methods, EOM-CCSD(T),
EOM-CCSD(T′), and EOM-CCSD(Tj), have been pro-
posed46-49 that are based on the equation-of-motion coupled
cluster approach (EOM-CC) developed by Bartlett and
others.50-63 Piecuch and co-workers have extended the
completely renormalized coupled-cluster theory64-66 to the
calculation of excitation energies, by adding noniterative
triples corrections to the EOM-CCSD energies in their CR-
EOMCCSD(T), CR-EOMCCSD(T)L, and r-CR-EOMCCS-
D(T) treatments65,67-71 which are based on the methods of
moments of coupled cluster equations.67,68,72-75 Finally one

should also note in this context a recent approach76 based
on the EOM-CC(m)PT(n) methods,77,78 the similarity trans-
formed EOM-CC method (STEOM)79-82 that implicitly
includes triples excitations, the Fock space coupled cluster
theory,83 the SAC-CI approach of Nakatsuji,84,85 and the
spin-flip equation-of-motion coupled cluster method by
Krylov and co-workers.86-90

The remaining parts of the paper are structured as follows.
In Section 2 the details of the calculations are specified. In
Section 3 the CCSDR(3) results are discussed in comparison
with the previously published CCSD and CC3 results.
Conclusions are drawn in section 4.

2. Computational Details

All calculations were carried out with the Dalton 2.0 program
package.91 The same MP2/6-31G* optimized geometries92-95

and TZVP basis set96 as in our previous studies were
employed.1,2

As discussed before,1,2 the TZVP basis set does not contain
diffuse functions and might not be able to give a balanced
description of excited states that are spatially extended and
have (partial) Rydberg character. For the present study this
is less important, since we are interested in a direct
comparison of correlated ab initio methods in the calculation
of valence excited states, which should be much less sensitive
to the basis set than the absolute excitation energies. For
example, the differences between the linear response CC3
and CCSD results deviate by only a few hundredths of 1 eV
from the corresponding literature values11,13,36,38-42,44,82,97-100

obtained with mostly larger basis sets. Our absolute CC3
excitation energies, on the other hand, tend to be slightly
too large, normally by 0.02-0.15 eV and sometimes by up
to 0.3 eV.

3. Results and Discussion

The CCSDR(3)/TZVP results for the 121 singlet valence
states are given in Table 1 together with the previously
published1 CCSD and CC3 results. 83 of these states are of
πfπ* type, 35 are of nfπ* type and three are of σfπ*
type. Figure 1 shows correlation plots between the CC2,
CCSD, and CCSDR(3) results on one side and the CC3
results on the other side for all calculated states. Figure 2

Figure 2. Histogram of the frequency of deviation (from CC3/TZVP in %) of all calculated CCSD/TZVP (left) and CCSDR(3)/
TZVP (right) singlet excited states.

Table 2. Deviations in Excitation Energies of 121 Singlet
Excited States with Respect to CC3/TZVP

method

CC2a CCSDa CCSDR(3)

mean 0.13 0.30 0.09
abs mean 0.17 0.30 0.09
std dev 0.26 0.38 0.14
maximum 0.95 1.28 0.52

a CC2/TZVP and CCSD/TZVP results from ref 1.
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presents histograms with the frequency of deviation from
CC3 for the CCSD and CCSDR(3) results. It is obvious that
compared with CCSD and CC2 the noniterative triples
correction in CCSDR(3) leads to a much better agreement
with the CC3 results over the whole range of energies. The
mean deviation from CC3 (Table 2) drops from 0.30 eV in

CCSD to 0.09 eV in CCSDR(3). The largest deviations from
CC3 are found for the 31B1g state of s-tetrazine (0.52 eV),
the 21E′ state of s-triazine (0.46 eV), and the 21Ag state of
all-E-octatetraene (0.43 eV), which is in each case about half

Figure 3. Histogram of the frequency of deviation (CCSDR(3)/TZVP vs CC3/TZVP, in %) of all calculated singlet πfπ* (left)
and nfπ* (right) excited states.

Table 3. Deviations in Excitation Energies of 35 Singlet
Excited nfπ* States with Respect to CC3/TZVP

method

CC2a CCSDa CCSDR(3)

mean 0.04 0.28 0.10
abs mean 0.10 0.28 0.10
std dev 0.13 0.36 0.14
maximum 0.56 1.28 0.52

a CC2/TZVP and CCSD/TZVP results from ref 1.

Table 4. Deviations in Excitation Energies of 45 Singlet
Excited States of the Benchmark Set with Respect to
CC3/TZVP, for States Where the R1 (CC3) Percentage
Exceeds 90%

method

CC2a CCSDa CCSDR(3)

mean 0.04 0.16 0.02
abs mean 0.09 0.16 0.02
std dev 0.11 0.18 0.03
maximum 0.27 0.30 0.09

a CC2/TZVP and CCSD/TZVP results from ref 1.

Table 5. Comparison of Relative CPU Times between
CCSD, CCSDR(3), and CC3 Calculations

molecule

benzene naphthalene

basis functions 150 238
states 6a 3
S+D amplitudes ≈ 515 000a 3 353 467
relative CPU time

CCSD 1 6
CCSDR(3) 22 132
CC3 1012 2706

a Six states in four different irreducible representations were
calculated in the same run: one 1Ag state with 517029 S+D
amplitudes, two 1B3u states with 514210 S+D amplitudes, two1B2u

states with 515667 S+D amplitudes and one 1B1g state with
514202 S+D amplitudes.

Figure 4. Correlation plot for all calculated singlet excited
states: energy difference between CCSDR(3) and CC3 versus
energy difference between CCSDR(3) and CCSD.

Figure 5. Correlation plot for all calculated singlet excited
states: percentage of the triples correction obtained in the
CCSDR(3) calculations versus the total CC3 triples correction.
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the deviation found for CCSD. Correspondingly the standard
deviation is also much smaller for CCSDR(3) than for CCSD
as can be seen from Figure 2 and Table 2.

The significantly improved performance of CCSDR(3) is
not restricted to a particular range of excited-state energies
but holds for the whole benchmark set as illustrated in the
correlation plots in Figure 1. For less than 10% of the states,
CCSDR(3) predicts slightly smaller excitation energies than
CC3, whereas the CCSD excitation energies in our bench-
mark set are always larger than the CC3 energies. We had
previously found that CC2 gives excitation energies both
larger and smaller than CC3 and consequently performs on
average better than CCSD for our benchmark set.1 However,
compared with CCSDR(3), the spread of results is signifi-
cantly larger in CC2 than in CCSDR(3). This can be seen in
the correlation plots (Figure 1) and is also indicated by the
standard deviations and maximum deviations in Table 2
which are about twice as large for CC2 than for CCSDR(3).

It is obvious from the histograms in Figure 3 and from
the comparison of the statistical data for the nfπ* transitions
alone (Table 3) against the data for all excited states (Table
2) that there is not much difference between the πfπ* and
nfπ* transitions. The largest outlier with respect to CC3,
i.e., the 31B1g state of s-tetrazine, is a nfπ* transition,
whereas the two next largest outliers, the 21E′ state of
s-triazine and the 21Ag state of all-E-octatetraene, are πfπ*
transitions.

When restricting the statistics to states with a CC3 single
excitation weight larger than 90% (called % R1 in Table 1),
the agreement between CCSDR(3) and CC3 becomes almost
perfect. The mean deviation is reduced to 0.02 eV, and the
maximum deviation is also less than 0.1 eV (see Table 4).

Relative CPU times for two representative calculations of
excited states in benzene and naphthalene are collected in
Table 5. It is gratifying to see that the necessary CPU time
is dramatically reduced in CCSDR(3) compared to CC3.
Nevertheless, due to the formal N7 scaling of CCSDR(3)

these calculations are still considerably more expensive than
the simpler CCSD calculations.

It would clearly be desirable to be able to estimate the
remaining error of CCSDR(3) relative to CC3 based on the
results of the CCSD and CCSDR(3) calculations alone. A
correlation plot for the relevant energy differences (Figure
4) shows that the remaining errors in the CCSDR(3) results
compared to CC3 are almost always smaller than the changes
on going from CCSD to CCSDR(3) (prominent exception:
the 21E′ state of s-triazine).

Analyzing the performance of CCSDR(3) as a function
of the single excitation weight in the CCSD calculations,
one finds that for all states in our benchmark set with a CCSD
single excitation weight smaller than 90% the difference
between the CCSDR(3) and CC3 results is larger than 0.1
eV. This implies that the data from CCSD calculations allow
us to pinpoint states, for which one very likely will encounter
larger differences between CCSDR(3) and CC3. However,
the opposite is not always true. There is one state in our
benchmark set (21E′ in s-triazine), where the difference is
0.46 eV despite a single excitation weight of 91.2%, while
there are two states in p-benzoquinone (11B3u and 21B1u) with
a single excitation weight of 91-92% which differ by ≈0.27
eV and in total 15 states with single excitation weights of
91-93% and differences between CCSDR(3) and CC3 in
the range between 0.1 and 0.2 eV.

Finally, it is important to know which fraction of the CC3
triples correction can be recovered in an CCSDR(3) calcula-
tion. This percentage is shown as a function of the size of
the total CC3 triples correction in Figure 5 and as function
of the remaining deviation from the CC3 results in Figure
6. It is obvious that with three exceptions (most prominent
again the 21E′ state of s-triazine) the CCSDR(3) triples
correction gives at least 50% of the iterative CC3 triples
correction, and on average it amounts to 78%. Even for the
cases with large CC3 triple corrections (0.4 eV or more),
CCSDR(3) yields about 60%. On the other hand, there are
also some systems where CCSDR(3) overestimates the CC3
triples correction. However, with the exception of the 41Ag

state of all-E-octatetraene, this happens only for states where
the remaining difference between CCSDR(3) and CC3 is less
than 0.02 eV and the total triples correction is less than 0.16
eV.

4. Conclusions

We have carried out CCSDR(3)/TZVP calculations of
vertical excitation energies for 24 molecules and a total of
121 valence excited singlet states from a recently published
benchmark set of organic molecules.1 Statistical comparison
of these data with the previously published linear response
CC2, CCSD, and CC3 results shows that adding the
noniterative triples corrections to the CCSD results leads to
a substantial improvement over CC2 and CCSD for all states
in this benchmark set.

Inclusion of the noniterative triples correction in
CCSDR(3) often reproduces the iterative CC3 triples cor-
rection almost quantitatively, at dramatically reduced CPU
times. For all states, which are dominated by single excita-
tions (CC3 single excitation weight larger than 90%), the

Figure 6. Correlation plot for all calculated singlet excited
states: percentage of the triples correction obtained in the
CCSDR(3) calculations versus the difference between
CCSDR(3) and CC3.
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CCSDR(3) results differ by at most 0.1 eV from the CC3
results. More important is that one can obtain a reasonable
estimate of the accuracy of the CCSDR(3) results from the
size of the triples correction in CCSDR(3) and the single
excitation weight in the CCSD calculations. The remaining
difference between CCSDR(3) and CC3 is in almost all cases
smaller than the noniterative triples correction from CCS-
DR(3). CCSDR(3) normally gives at least 60% of the CC3
triples correction even if the latter is large (>0.4 eV).
Furthermore one can easily identify states for which differ-
ences of more than 0.1 eV between CCSDR(3) and CC3
should be expected: for all states in our benchmark with a
CCSD single excitation weight smaller than 90%, the
CCSDR(3) results deviate from the CC3 results by 0.1 eV
or more.

We conclude that CCSDR(3) may play a similar role for
excited states as CCSD(T) does for ground states, and that
an appropriate sequence of linear response-coupled cluster
methods for the calculation of vertical excitation energies is
CC2, CCSDR(3), CC3. However, since transition moments
are not defined in CCSDR(3), the corresponding sequence
for the calculation of oscillator strengths remains CC2,
CCSD, CC3.
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Abstract: RCCSD(T) and/or CASSCF/MRCI calculations have been carried out on the X̃1A′
and Ã1A′′ states of HSiCl employing basis sets of up to the aug-cc-pV5Z quality. Contributions
from core correlation and extrapolation to the complete basis set limit were included in determining
the computed equilibrium geometrical parameters and relative electronic energy of these two
states of HSiCl. Franck-Condon factors which include allowance for anharmonicity and
Duschinsky rotation between these two states of HSiCl and DSiCl were calculated employing
RCCSD(T) and CASSCF/MRCI potential energy functions, and were used to simulate the Ã1A′′
r X̃1A′ absorption and Ã1A′′ f X̃1A′ single vibronic level (SVL) emission spectra of HSiCl and
DSiCl. Simulated absorption and experimental LIF spectra, and simulated and observed
Ã1A′′ (0,0,0) f X̃1A′ SVL emission spectra, of HSiCl and DSiCl are in very good agreement.
However, agreement between simulated and observed Ã1A′′ (0,1,0) f X̃1A′ and Ã1A′′ (0,2,1) f
X̃1A′ SVL emission spectra of DSiCl is not as good. Preliminary calculations on low-lying excited
states of HSiCl suggest that vibronic interaction between low-lying vibrational levels of the Ã1A′′
state and highly excited vibrational levels of the ã3A′′ is possible. Such vibronic interaction may
change the character of the low-lying vibrational levels of the Ã1A′′ state, which would lead to
perturbation in the SVL emission spectra from these vibrational levels.

Introduction

In their continuing study of the spectroscopy of carbenes,
silylenes, and germylenes, reactive intermediates important
for chemical vapor deposition (CVD) processes in the
semiconductor industry, the Clouthier group recorded laser
induced fluorescence (LIF) spectra of HSiCl and DSiCl
produced in an electric discharge of SiHCl3 and SiDCl3,
respectively, diluted in Ar through a pulsed jet.1 This work
was performed over a decade ago. A few years later, they
published single vibronic level (SVL) emission spectra of
HSiCl and DSiCl.2 In this SVL emission (or dispersed
fluorescence) study, they employed data from harmonic force

field and density functional theory (DFT) calculations using
the B3LYP functional and the 6-311G(3df,3pd) basis set
to simulate the Ã1A′′ (0,0,0)f X̃1A′ SVL emission spectrum
of HSiCl, using computed Franck-Condon (FC) factors
obtained within the harmonic oscillator model. Agreements
between simulated and observed SVL emission spectra are
reasonably good, particularly for the main Ã1A′′ (0,0,0) f
X̃1A′(0,v2′′ ,0) vibrational progression. However, for the weak
vibrational structure, there are clearly noticeable discrepan-
cies between simulated and observed SVL spectra. Specifi-
cally, in addition to the main Ã1A′′ (0,0,0) f X̃1A′(0,v2′′ ,0)
progression, simulated spectra show only one relatively weak
Ã1A′′ (0,0,0)f X̃1A′(1,v2′′ ,0) progression, but in the experi-
mental SVL spectrum the only observed weak progression
is the Ã1A′′ (0,0,0)f X̃1A′(0,v2′′ ,1) progression (vide infra).
The Ã1A′′ (0,0,0) f X̃1A′(1,v2′′ ,0) progression was not
observed in the experimental SVL emission spectrum as
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predicted by harmonic FC simulation. It was concluded that,
“Obtaining reliable simulations of these spectra will be a
stringent test of future Franck-Condon calculations which
include vibrational anharmonicity.”2 In this connection, we
propose, in the present investigation, to carry out state-of-
the-art ab initio calculations on the X̃1A′ and Ã1A′′ states of
HSiCl and FC factor calculations between these two states,
which include allowance for anharmonicity and Duschinsky
rotation, aiming to obtain better agreement between theory
and experiment.

For earlier spectroscopic and computational studies on
HSiCl, Clouthier et al. has given thorough discussions
previously,1,2 and hence they will not be repeated here. After
the above-mentioned LIF and SVL emission studies on
HSiCl/DSiCl were published,1,2 microwave spectra of
H28Si35Cl, H28Si37Cl, H29Si35Cl, and H30Si35Cl were measured
at 14-15 GHz, and the effective rotational constants, chlorine
nuclear quadrupole coupling constants, and nuclear spin-
rotation constants of the four isotopomers were determined.3

The molecular structure of HSiCl derived from this study is
essentially identical to those reported in references 1 and 2.
In addition, the 35Cl nuclear quadrupole coupling constant
in HSiCl was calculated at up to the MP3 level. A LIF and
dispersed fluorescence study of HSiCl, produced in the UV
photodissociation of 2-chloroethenylsilane, has also been
published, and it was concluded that emission spectra of
HSiCl could be useful to monitor the CVD process of
2-chloroethenylsilane.4 On the computational front, a number
of high-level ab initio studies have been carried out recently
on the X̃1A′ state of HSiCl.5-7 The latest study reported
CCSD(T) calculations of nuclear-spin-rotation and nuclear
quadrupole coupling constants of some halocarbenes and
halosilylenes, including HSiCl.7 However, for the Ã1A′′ state
of HSiCl, to our knowledge, the only available calculations
are the above-mentioned B3LYP/6-311G(3df,3pd) calcula-
tions reported in ref 2.

Related closely to the present study, we have recently
reported a combined ab initio/FC study on the SVL emission
spectra of HSiF and DSiF.8 In this work, very good
agreement between simulated and observed spectra was
obtained for the Ã1A′′ (1,0,0)f X̃1A′ SVL emission of HSiF
and the Ã(0,0,0) f X̃1A′ and Ã(0,1,0) f X̃1A′ SVL
emissions of DSiF. However, discrepancies between simu-
lated and observed spectra of the Ã(0,1,0)f X̃1A′ and (1,1,0)
f X̃1A′ SVL emissions of HSiF have been found. It was
concluded that they were most likely, partly, caused by
experimental deficiencies and, partly, by inadequacies in the
ab initio levels of theory employed in the calculation of the
potential energy functions (PEFs). Nevertheless, on the basis
of computed FC factors, minor revisions of previous
vibrational assignments have been suggested (see ref 8 for
details).

Computational Details

Ab Initio Calculations. RCCSD(T)9,10 and CASSCF/
MRCI11,12 geometry optimization calculations were car-
ried out on the X̃1A′ state of HSiCl, while only CASSCF/
MRCI calculations were performed on the lowest open-shell
singlet Ã1A′′ state. For the closed-shell X̃1A′ state, the

computed T1 diagnostics (<0.013 in all cases) obtained from
RCCSD(T) calculations and the calculated CI coefficients
(>0.92 for the main ground-state electronic configuration)
from the computed CASSCF and MRCI wave functions
indicate that multireference character is negligibly small for
this state at the computed equilibrium geometries. Therefore,
it can be concluded that the size-consistent, single-reference
RCCSD(T) method should be the more suitable, and more
reliable than the size-inconsistent MRCI method, for the X̃1A′
state of HSiCl. Nevertheless, CASSCF/MRCI calculations
were also carried out for the X̃1A′ state to obtain relative
electronic energies between the X̃1A′ state and the Ã1A′′ state
because the latter is an open-shell singlet state, which cannot
be adequately treated by a single electronic configuration
and hence requires a multireference method. It should be
noted that all CASSCF/MRCI calculations carried out in the
present study are single state (i.e., not average-state) calcula-
tions, with the CASSCF wave function (i.e., the CASSCF
molecular orbitals and reference configurations to be used
in subsequent MRCI calculations) optimized for the single
state concerned (i.e., the X̃1A′ state or the Ã1A′′ state). The
CASSCF/MRCI wave functions thus obtained are optimal
for the state concerned.

Correlation-consistent basis sets of aug-cc-pVQZ (AVQZ),
aug-cc-pV5Z (AV5Z), and aug-cc-pwCVQZ (ACVQZ)
qualities have been used in the present investigation. For H,
the standard aug-cc-pVQZ and aug-cc-pV5Z basis sets13

were used. With the AVQZ and AV5Z quality basis sets,
the aug-cc-pV(Q+d)Z and aug-cc-pV(5+d)Z basis sets14

were used for the second row elements, Si and Cl, and a
full valence active space was employed in the CASSCF and
MRCI calculations, while the default frozen core was
employed in the RCCSD(T) calculations. Results obtained
from calculations employing the AVQZ and AV5Z basis sets
were used to estimate contributions on extrapolation to the
complete basis set (CBS) limit to the optimized geometrical
parameters and computed relative electronic energies. Two
extrapolation techniques were used. First, the correction took
half of the difference between the computed CCSD(T) or
CASSCF/MRCI+D (D denoting the inclusion of Davidson
corrections15) values (i.e., optimized geometrical parameters
or computed relative electronic energies) obtained using the
AVQZ and AV5Z basis sets.16 Second, the extrapolation
technique, which employed the 1/X3 formula17 with the
computed values (i.e., optimized geometrical parameters or
computed relative electronic energies) obtained using the
AVQZ and AV5Z basis sets, was used. With the ACVQZ
quality basis sets, the aug-cc-pwCVQZ basis sets18 were used
for Si and Cl, and the RCCSD(T) and CASSCF/MRCI
calculations that were carried out employed both the default
frozen core, and also the core with only the Si 1s2 and Cl
1s2 electrons frozen. Results obtained from these calculations
with the ACVQZ basis sets were used to estimate contribu-
tions from including the 2s22p6 core electrons of Si and Cl
in the correlation treatments to the optimized geometrical
parameters and computed relative electronic energies. The
estimated contributions of basis size extrapolation to the CBS
limit and core electron correlation to the optimized geo-
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metrical parameters and computed relative electronic energies
have been assumed to be additive.

All ab initio calculations carried out in the present study,
including the energy scans for the potential energy surfaces
to be described below, have employed the MOLPRO suite
of programs.19

Potential Energy Functions, Variational Calculations
of Anharmonic Vibrational Wave Functions, and
Franck-Condon Factor Calculations. RCCSD(T) and
CASSCF/MRCI+D potential energy functions (PEFs) for
the X̃1A′ and Ã1A′′ states of HSiCl, respectively, were
obtained by fitting the following polynomial to calculated
ab initio total electronic energies {RCCSD(T)/AV5Z and
CASSCF/MRCI+D/AV5Z energies, respectively}:

V)∑
ijk

Cijk(S1)
i(S2)

j(S3)
k+Veqm (1)

In the above expression of the PEF, S2 is the bending
coordinate of Carter and Handy,20 S2 ) ∆θ + R∆θ2 + �∆θ3,
where ∆θ is the displacement of the bond angle from the
equilibrium value, (θ - θe). S1 and S3 are the displacements
of the HSi and SiCl bond lengths from the equilibrium
values, (r - re), respectively; 377 CCSD(T)/AV5Z energy
points in the ranges of 1.25 e r(HSi) e 1.99 Å, 70.0 e
θ(HSiCl) e 130.0°, and 1.81 e r(SiCl) e 2.55 Å scanned
for the X̃1A′ state and 559 CASSCF/MRCI+D/AV5Z energy
points in the ranges of 1.29 e r(HSi) e 2.45 Å, 75.0 e
θ(HSiCl) e 163.0°, and 1.83 e r(SiCl) e 2.60 Å scanned
for the Ã1A′′ state were used in the fitting of the PEFs. The
nonlinear least-squares fit procedure, NL2SOL,21 was em-
ployed to obtain the Cijk values (with the restriction of i +
j + k g 2; vide infra), Veqm, re, θe, R, and � from the
computed single point energy data.

For both the X̃1A′ and the Ã1A′′ states, variational
calculations, which employed the rovibronic Hamiltonian of
Watson22 for a nonlinear molecule, were carried out to obtain
the anharmonic vibrational wave functions and energies. The
anharmonic vibrational wave functions were expressed as
linear combinations of harmonic oscillator functions, h(V1,
V2, V3), where V1, V2, and V3 denote the quantum numbers of
the harmonic basis functions for the HSi stretching, HSiCl
bending, and SiCl stretching modes, respectively, as de-
scribed previously.23 Harmonic basis functions with vibra-
tional quantum numbers up to h(7, 16, 16) and a restriction
of V1 + V2 + V3 e 16 were included in the variational
calculations of the X̃1A′ state of both HSiCl and DSiCl. For
the Ã1A′′ state, harmonic basis functions up to h(9, 12, 12),
with a restriction of V1 + V2 + V3 e 12 were considered for
HSiCl. For the Ã1A′′ state of DSiCl, harmonic basis functions
up to h(8, 12, 12) were included. FC factors were calculated
employing computed anharmonic vibrational wave functions
and with allowance for Duschinsky rotation, as described
previously.24 The best estimated computed geometrical
parameters of the two states (vide infra) were used in the
FC calculations. Employing these computed FC factors for
spectral simulations gave the best theoretical simulated
spectra.

In spectral simulations, vibrational components of the
Ã1A′′ f X̃1A′ SVL emission spectra of HSiCl and DSiCl

were simulated using Gaussian functions with a full-width-
at-half-maximum (fwhm) of 10 cm-1. The relative intensity
of each vibrational component in a simulated SVL emission
spectrum was expressed as the product of the corresponding
computed anharmonic FC factor and a frequency factor of
power four. For simulations of Ã1A′′ r X̃1A′ absorption
spectra of HSiCl and DSiCl, the relative intensity of each
vibrational component was expressed as the corresponding
computed anharmonic FC factor multiplied by a frequency
factor of power one, and a Gaussian line shape with a fwhm
of 10 cm-1. In all spectral simulations carried out, the
experimental adiabatic relative electronic energies (including
zero-point energy corrections) between the X̃1A′ and Ã1A′′
states {i.e., the T0 values of the Ã1A′′ state of HSiCl
(20717.769 cm-1) or DSiCl (20773.431 cm-1) obtained from
the LIF spectra1} were used for the sake of making direct
comparison between simulated and observed spectra easier.
Similarly, the wavenumber scale in each simulated SVL
emission spectrum is taken relative to the laser excitation
line, giving a direct measure of the ground electronic state
vibrational energy, as normally used in published experi-
mental dispersed fluorescence spectra.2

Results and Discussion

The optimized geometrical parameters, computed vibrational
frequencies, and relative electronic energies of the X̃1A′ and
Ã1A′′ states of HSiCl obtained from the present investigation
are summarized and compared with previously calculated
or available experimental values in Tables 1-3. In Table 4,
some of the computed anharmonic vibrational energies of
the X̃1A′ state of HSiCl and DSiCl obtained from variational
calculations in the present work are compared with available
experimental values from ref 2 (EPAPS Supporting Informa-
tion25). In addition, some computed excitation energies from
the X̃1A′(0,0,0) level to various vibrational levels of the Ã1A′′
state of HSiCl and DSiCl, corresponding computed FC
factors and upper vibrational state assignments obtained from
the FC factor calculations of the present study are compared
with available experimental transition energies given in the
LIF study of ref 1 in Tables 5 and 6. Calculated and
experimental transition energies of some “hot” bands are also
compared in these two tables. The fitted RCCSD(T)/AV5Z
and CASSCF/MRCI+D/AV5Z PEFs of the X̃1A′ and Ã1A′′
state of HSiCl have root-mean-square (rms) deviations of
9.4 and 23.1 cm-1, respectively, from the computed ab initio
energy data points, and the Cijk values of the polynomials
are given in Table 7. The rms deviation of the PEF of the
Ã1A′′ state is relatively large, when compared with that of
the X̃1A′ state. This is mainly because considerably more
energy points and wider ranges of the geometrical parameters
were employed in the fitting (cf., those of the X̃1A′ state) to
make sure that the PEF is adequate for simulating the full
absorption spectra of HSiCl and DSiCl, yet to be recorded.
The full lists of the computed FC factors between the X̃1A′
and Ã1A′′ states of HSiCl and DSiCl are available, upon
request, from the authors.
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Optimized Geometrical Parameters, Computed
Vibrational Frequencies, and Relative Electronic
Energies. Considering the computed equilibrium bond
lengths, re(HSi) and re(SiCl), and bond angle, θe(HSiCl), of
the X̃1A′ state of HSiCl, it can be seen from Table 1 that,
RCCSD(T) values obtained previously (note that only
relatively high level results are considered and included in
Table 1) and from the present study using different basis
sets or frozen cores agree very well. Specifically, the
maximum differences in computed RCCSD(T) re(HSi),
re(SiCl), and θe(HSiCl) values are smaller than 0.005 Å,
0.011 Å, and 0.5°, respectively. When the computed RCCSD-
(T) geometrical parameters of the X̃1A′ state obtained using
augmented basis sets in the present study are considered

(previous calculations5,6 did not use augmented basis sets;
see Table 1), the ranges of the computed values are even
narrower (within 0.0036 Å, 0.0077 Å, and 0.19°, respec-
tively). However, computed CASSCF/MRCI and CASSCF/
MRCI+D geometrical parameters of the X̃1A′ state cover
wider ranges of values. In particular, the computed CASSCF/
MRCI+D/ACVQZ bond angle of 97.48° is larger than all
other computed bond angles by ∼2°. Because the multiref-
erence character is not important for the X̃1A′ state, as
mentioned above, the RCCSD(T) results should be more
reliable than the CASSCF/MRCI+D results. Consequently,
contributions from extrapolation to the CBS limit and core
correlation were estimated based only on the RCCSD(T)
results, as shown in Table 1 (see footnotes e to k of Table

Table 1. Computed Geometrical Parameters (in Å and deg) and Vibrational Frequencies {ω1 (HSi), ω2 (Bending), and ω3

(SiCl) in cm-1} of the X̃1A′ State of HSiCl Obtained at Different Levels of Calculations

methods re(HSi) re(SiCl) θe ω1 ω2 ω3

CAS/MRCI/AVQZa 1.5085 2.0716 95.918
CAS/MRCI+Db/AVQZa 1.5158 2.0756 95.462
CCSD(T)/AVQZa 1.5184 2.0792 95.215 2054.1 818.6 524.2
CAS/MRCI+Db/ACVQZc 1.5144 2.0461 97.479
CCSD(T)/ACVQZc (fc) 1.5178 2.0778 95.233
CCSD(T)/ACVQZc 1.5144 2.0715 95.183
CAS/MRCI/AV5Zd 1.5081 2.0693 95.932
CAS/MRCI+Db/AV5Zd 1.5154 2.0730 95.480
CCSD(T)/AV5Zd 1.5180 2.0768 95.046
CCSD(T)/AV5Zd PEF 1.5181 2.0767 95.059 2051.0 820.9 527.1
PEF (ν’s) 1973.1 805.5 521.8
PEF (ω’s; DSi35Cl) 1476.4 600.3 522.3
PEF (ν’s; DSi35Cl) 1436.5 592.2 517.1
CBS1e -0.0002 -0.0012 -0.085
CBS2f -0.0004 -0.0025 -0.177
Core1g -0.0040 -0.0077 -0.032
Core2h -0.0034 -0.0063 -0.050
(CBS+Core)lower

i 1.5136 2.0666 94.819
(CBS+Core)upper

j 1.5144 2.0693 94.930
best theoretical re valuesk 1.514(1) 2.068(1) 94.9(1)
B3LYP/6-311G(3df,3pd)l 1.5256 2.0968 94.8
QCISD/6-311+G(3df,3pd)l 1.515 2.083 95.3
CCSD(T)/cc-pCVTZm 1.5187 2.0808 95.449 2044.6 821.7 529.8
CCSD(T)/cc-pCVQZm 1.5138 2.0697 95.302
empirical cc-pCVTZm (re, ν’s) 1.5140 2.0724 94.66 1964.60 808.56 528.18
CCSD(T)/cc-pV(Q+d)Zn 1.5180 2.0778
CCSD(T)/cc-pwCVQZn 1.5140 2.0700
CCSD(T)/cc-pCVQZn 1.5147 2.0700 95.303
absorptiono (r0, ν’s) 1.561 2.064 102.8 808 522
LIFp (re

z, ν’s) 1.525(5) 2.067(3) 96.9(5) 1968.7(4) 805.9(2) 522.8(1)
DFl (ν’s) 1968.8 805.9 522.8
DFl (rz, ω0’s) 1.5275(10) 2.0747(2) 94.97(11) 2002.2(7) 809.5(2) 525.1(4)
DFl (re

z, ω’s) 1.515(2) 2.0700(3) 95.0(1) 2044(1) 822(1) 529(1)
DFl (ν’s; DSi35Cl) 1434.4 592.3 518.1
DFl (ω0’s; DSi35Cl) 1452(1) 595.1(1) 521.2(5)
DFl (ω’s; DSi35Cl) 1473.2(10) 601.3(10) 525.3(10)

a The aug-cc-pV(Q+d)Z basis set was used for Si and Cl. b MRCI energies plus Davidson corrections. c The aug-cc-pwCVQZ basis set
was used for Si and Cl, and their 2s22p6 electrons were correlated except when specified with (fc); see text. d The aug-cc-pV(5+d)Z basis
set was used for Si and Cl. e The correction of extrapolation to the complete basis set (CBS) limit takes half of the difference between the
computed CCSD(T) values obtained using the AVQZ and AV5Z basis sets; see text. f The correction of extrapolation to the complete basis
set (CBS) limit employs the 1/X3formula using the computed CCSD(T) values obtained with the AVQZ and AV5Z basis sets; see text. g The
correction of core electron correlation contribution to the computed geometrical parameters takes the difference between the computed
CCSD(T) values obtained using the AVQZ (with the default frozen core) and ACVQZ {frozen only the Si and Cl 1s2 electrons} basis sets.
h The correction of core electron correlation contribution to the computed geometrical parameters takes the difference between the
computed CCSD(T) values obtained using the ACVQZ basis set with and without the 2s22p6 electrons of Si and Cl being correlated in the
CCSD(T) calculations. i Assuming that the basis set extrapolation and core electron correlation contributions are additive, this combination of
the CBS and core corrections gives the lower limit of the combined contribution. j Assuming that the basis set extrapolation and core
electron correlation contributions are additive, this combination of the CBS and core corrections gives the upper limit of the combined
contribution. k The best theoretical estimates take the averaged value of the upper and lower limits (see footnotes i and j) and the
uncertainties are the differences between the best estimates and the upper/lower limits. l From ref 2. m From ref 5. n From ref 6. o From ref
28. p From ref 1.
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1 for the methods employed to obtain the best theoretical
estimates and their uncertainties). It can be seen that these
contributions (Core1, Core2, CBS1, and CBS2 in Table 1)
are generally quite small. The best estimated theoretical
geometrical parameters of the X̃1A′ state of HSiCl have
re(HSi) ) 1.514 ( 0.001 Å, re(SiCl) ) 2.068 ( 0.001 Å,
and θe ) 94.9 ( 0.1°. These values agree very well with
the “empirical cc-pCVTZ” values of 1.5140 Å, 2.0724 Å,
and 94.66° (see Table 1) obtained previously5 and also with
the latest, estimated experimental re

z values of 1.515 ( 0.002
Å, 2.0700 ( 0.0003 Å, and 95.0 ( 0.1° reported in the
dispersed fluorescence study.2 The “empirical cc-pCVTZ”
re bond lengths and bond angle (see Table 1) were derived
from equilibrium rotational constants obtained based on r0

rotational constants (A0, B0, and C0 from ref 1) corrected for
vibrational effects employing centrifugal distortion and
vibration-rotation constants derived from calculated har-
monic and cubic force fields at the CCSD(T)/cc-pCVTZ level
(see ref 5 for details).

For the Ã1A′′ state of HSiCl, the computed CASSCF/
MRCI and CASSCF/MRCI+D geometrical parameters ob-
tained using different basis sets or frozen cores are very
consistent (see Table 2), unlike what was obtained for the
X̃1A′ state, as mentioned above. Moreover, similar to the

X̃1A′ state, contributions from extrapolation to the CBS limit
and core correlation based on the more reliable CASSCF/
MRCI+D values (c.f., the CASSCF/MRCI values without
Davidson corrections; see Table 2) are generally small. The
best estimated theoretical geometrical parameters obtained
(see footnotes e to k of Table 2) have re(HSi) ) 1.504 (
0.001 Å, re(SiCl) ) 2.041 ( 0.002 Å, and θe) 118.1 (
0.1°. When these values are compared with the only
previously computed values of ref 2, the B3LYP bond angle
of 115.5° is clearly too small (see Table 2). If the the best
estimated theoretical values obtained here are compared with
the experimental re

z (estimated equilibrium) values of re(HSi)
) 1.532 ( 0.008 Å, re(SiCl) ) 2.040 ( 0.003 Å, and θe)
118.1 ( 0.5° derived in the LIF study of ref 1, the agreement
of within 0.001 Å and 0.1° for re(SiCl) and θe is very good.
However, the agreement for re(HSi) is not as good, with the
experimental re

z(HSi) value larger than the best estimated
theoretical value by 0.028 Å. Of particular relevance to the
present study, the estimated experimental re

z(HSi) values
increase upon excitation from the X̃1A′ to Ã1A′′ state (as
derived from the dispersed fluorescence and LIF studies of
refs 2 and 1, respectively; see Tables 1and 2), but the
corresponding best estimated theoretical values obtained here
decrease upon excitation. Nevertheless, the experimental

Table 2. Computed Geometrical Parameters (in Å and deg) and Vibrational Frequencies {ω1 (HSi), ω2 (Bending), and ω3

(SiCl) in cm-1} of the Ã1A′′ states of HSiCl Obtained at Different Levels of Calculations

methods re(HSi) re(SiCl) θe ω1 ω2 ω3

CAS/MRCI/AVQZa 1.5110 2.0506 117.957
CAS/MRCI+Db/AVQZa 1.5090 2.0505 117.931
CAS/MRCI+D/ACVQZc (fc) 1.5083 2.0491 117.964
CAS/MRCI+Db/ACVQZc 1.5046 2.0451 118.137
CAS/MRCI/AV5Zd 1.5107 2.0480 117.939
CAS/MRCI+Db/AV5Zd 1.5086 2.0476 117.909
CAS/MRCI+Db/AV5Zd PEF 1.5083 2.0476 117.722 1962.2 594.0 536.4
PEF (ν’s) 1771.1 569.2 527.0
PEF (ω’s; DSi35Cl) 1413.0 426.9 545.0
PEF (ν’s; DSi35Cl) 1318.0 414.1 537.7
CBS1e -0.0002 -0.0015 -0.011
CBS2f -0.0004 -0.0030 -0.023
Core1g -0.0044 -0.0054 +0.206
Core2h -0.0037 -0.0040 +0.173
(CBS+Core)lower

i 1.5038 2.0392 118.059
(CBS+Core)upper

j 1.5047 2.0422 118.104
best theoretical re valuesk 1.504(1) 2.041(2) 118.1(1)
B3LYP/6-311G(3df,3pd)l 1.5012 2.066 115.5
absorptionm (r0, ν’s) 1.499 2.047 116.1 1250; 1756 568 533
LIFn (rs, ν’s) 1.511(9) 2.051(11) 116.3(3) 1747.08 563.87 532.32
LIFn (rz, ω0’s) 1.548(7) 2.045(1) 118.1(4) 1839.6(5) 567.6(2) 534.8(2)
LIFn (re

z, ω’s) 1.532(8) 2.040(3) 118.1(5) 1956.4 585.8 540.9
LIFn (ν’s; DSi35Cl) 1300.799 408.649 543.169
LIFn (ω0’s; DSi35Cl) 1351.0(3) 409.5(2) 546.1(2)
LIFn (ω’s; DSi35Cl) 1408.3 418.2 552.2

a The aug-cc-pV(Q+d)Z basis set was used for Si and Cl. b MRCI energies plus Davidson corrections. c The aug-cc-pwCVQZ basis set
was used for Si and Cl, and their 2s22p6 electrons were correlated except when specified with (fc); see text. d The aug-cc-pV(5+d)Z basis
set was used for Si and Cl. e The correction of extrapolation to the complete basis set (CBS) limit takes half of the difference between the
computed MRCI+D values obtained using the AVQZ and AV5Z basis sets; see text. f The correction of extrapolation to the complete basis
set (CBS) limit employs the 1/X3 formula using the computed MRCI+D values obtained with the AVQZ and AV5Z basis sets; see text. g The
correction of core electron correlation contribution to the computed geometrical parameters takes the difference between the computed
MRCI+D values obtained using the AVQZ (with the default frozen core) and ACVQZ {frozen only the Si and Cl 1s2 electrons} basis sets;
see text. h The correction of core electron correlation contribution to the computed geometrical parameters takes the difference between the
computed MRCI+D values obtained using the ACVQZ basis set with and without the 2s22p6 electrons of Si and Cl being correlated in the
CASSCF/MRCI+D calculations. i Assuming that the basis set extrapolation and core electron correlation contributions are additive, this
combination of the CBS and core corrections gives the lower limit of the combined contribution. j Assuming that the basis set extrapolation
and core electron correlation contributions are additive, this combination of the CBS and core corrections gives the upper limit of the
combined contribution. k The best theoretical estimates take the averaged value of the upper and lower limits (see footnotes i and j) and the
uncertainties are the differences between the best estimates and the upper/lower limits. l From ref 2. m From ref 28. n From ref 1.
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uncertainty of 0.008 Å given in ref 1 for the estimated
equilibrium re

z(HSi) value of the Ã1A′′ state of HSiCl is
significantly larger than that estimated for re

z(SiCl). In
addition, the experimentally derived r0(HSi) values of the
X̃1A′ and Ã1A′′ states of HSiCl (1.5214 ( 0.0008 Å and
1.505 ( 0.005 Å, respectively) reported in the LIF study1

actually give a decrease in the r0(HSi) bond length upon
excitation. Similarly, the derived r0° and rs HSi bond lengths
also give decreases upon excitation (see ref 1 for details). It
is only after including harmonic contributions, based on
normal coordinate analysis and harmonic force fields, to
obtain the rz and re

z geometrical parameters that increases
in the HSi bond length upon excitation are obtained. These
increases are mainly because the rz and re

z HSi bond lengths
of the Ã1A′′ state become significantly larger than the r0 and
rs values. It was noted in ref 1 that available data used in
deriving the harmonic force fields were insufficient to
determine some interaction force constants, which were
assumed to be 0.0 in the fitting (see ref 1 for details). This
may be the cause of the discrepancy between the best
estimated theoretical re(HSi) bond length of the Ã1A′′ state
of HSiCl obtained here and the experimental re

z value
reported in ref 1. In any case, the best estimated theoretical
re(HSi) value of the Ã1A′′ state of HSiCl agrees very well
with the experimentally derived r0 and rs values of 1.505 (
0.005 and 1.511 ( 0.009 Å, respectively, given in ref 1.

Regarding computed vibrational frequencies of the X̃1A′
state of HSiCl, the differences between the computed
harmonic values obtained using the AVQZ (numerical second
derivative calculations) and AV5Z (variational calculations
using the PEF) basis sets obtained in the present study are
less than 4 cm-1 for all three vibrational modes (see Table
1). Comparing the computed fundamental frequencies of all
three vibrational modes of the X̃1A′ states of both HSiCl
and DSiCl obtained here employing the RCCSD(T)/AV5Z
PEF with the corresponding experimental values obtained
from the dispersed fluorescence study,2 the maximum
discrepancy is less than 5 cm-1. For the harmonic frequen-
cies, the maximum difference between computed and ex-
perimentally derived values is 7 cm-1 for ω1′′ , the HSi
stretching mode, of HSiCl. Summing up, the agreement
between theory and experiment is very good for the
vibrational frequencies of the X̃1A′ states of both HSiCl and
DSiCl, suggesting that the RCCSD(T)/AV5Z PEF is highly
reliable, particularly near the bottom of the potential energy
well. For the Ã1A′′ state of HSiCl and DSiCl, the agreement
between theory and experiment for the vibrational frequen-
cies of the bending and SiCl stretching modes is within 10
cm-1 (see Table 2), which is reasonably good. For the HSi
stretching mode, the computed ν1′ of HSiCl (1771.1 cm-1;
see Table 2) is larger than the experimental value (1747.08
cm-1) by ∼24 cm-1, which is the largest discrepancy between
computed and experimental vibrational frequencies of the
Ã1A′′ states of HSiCl and DSiCl. Nevertheless, the computed
and experimentally derived ω1′ values of the Ã1A′′ state of
HSiCl agree to within 6 cm-1. In addition, for the DSi
stretching mode, the computed ν1′ value agree with the
experimental value to within 18 cm-1. It should be noted
that the difference between the harmonic and fundamental

frequencies of the HSi stretch mode is quite large (∼200
cm-1 whether based on the computed or experimentally
derived values; see Table 2), indicating large anharmonic
effects. Employing linear combinations of harmonic basis
functions for anharmonic vibrational wave functions may be
inadequate for the HSi stretching mode of HSiCl.

Computed adiabatic electronic energies, Te, of the Ã1A′′
state (relative to the X̃1A′ state) of HSiCl obtained at different
levels of calculation are summarized in Table 3. It can be
seen that contributions from basis set extrapolation (CBS1
and CBS2 in Table 3) to the computed Te values are very
small (<0.0005 eV). However, core correlation contributions
are significant (ca., -0.07 eV). The best estimated theoretical
Te value is 2.564 ( 0.067 eV (20683 ( 538 cm-1). Including
correction of zero-point vibrational energies of the two states
involved (∆ZPE in Table 3), the best theoretical T0 value is
2.54 ( 0.07 eV (20456 ( 560 cm-1). It is pleasing that this
value agrees with the experimental value of 2.5687 eV
(20717.769 cm-1) obtained from the LIF study1 to within
0.03 eV (262 cm-1). The best theoretical T0 value of the
Ã1A′′ state of DSiCl has also been estimated and given in
Table 3, and it agrees with the experimental value also to
within 0.03 eV (236 cm-1). In summary, the ab initio results
obtained in the present study agree very well with available
experimental values.

Computed FC Factors and Simulated Absorption
and SVL Emission Spectra. Before the simulated spectra
are discussed, some computed and experimental vibrational
energies of the X̃1A′ state of HSiCl and DSiCl are compared
in Table 4 (the form of the vibrational designations used
follows those given in refs 2 and 25). It can be seen that
agreements between computed and experimental energies are
reasonably good, particularly for low-lying vibrational levels.
Therefore, on energy grounds, all the vibrational assignments
given in the dispersed fluorescence study2 for the X̃1A′ state
of HSiCl and DSiCl are confirmed. Nevertheless, for a few
vibrational levels, there are other vibrational levels, which
are very close in energy according to our variational
calculations of anharmonic vibrational wave functions of the
X̃1A′ states of HSiCl and DSiCl, and hence, alternative
assignments are possible based on our computed anharmonic
vibrational energies. These are the 1127 level of HSiCl and
the 211 and 212 levels of DSiCl (as shown with two energy
entries under “calcd” in Table 4). However, for these
relatively high energy vibrational levels with high quantum
numbers in the bending mode (V2′′ ), the computed anhar-
monic vibrational wave functions are rather mixed with no
single dominant harmonic basis functions. This is also the
case for high vibrational levels of the Ã1A′′ state to be
discussed below, particularly for HSiCl, where ν2′ and ν3′
are close in energy {difference 31.55 (experimental value)
and 42.3 (computed value) cm-1} and their normal modes
show mixing of bending and SiCl stretching. For some of
these levels, which are heavily mixed, the vibrational
designations have been determined based on both the
computed anharmonic vibrational wave functions and the
expected vibrational spacing of a series, and they may be
tentative.
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Computed (Ecalcd in Table 5) and experimental (Eexptl; from
the LIF study of ref 1) excitation energies from the
X̃1A′(0,0,0) level to the Ã1A′′ (V1′,V2′,V3′) levels of HSiCl and
also excitation energies of some “hot” bands, with their
corresponding computed FC factors (computed at a Boltz-
mann vibrational temperature of 300 K), are compared in
Table 5. Some possible alternative assignments to those given
in the LIF study are also given in Table 5, on the basis of
the computed FC factors and anharmonic vibrational ener-

gies. These alternative assignments are mainly for transitions,
where the discrepancies between the computed and experi-
mental energies are larger than ∼20 cm-1, the experimental
vibrational spacings differ significantly from what would be
expected for the assigned progression or the computed FC
factors with the assignments of ref 1 are relatively small.
For example, for the Ã1A′′ (1,V2′,0)′′ X̃1A′(0,0,0) progression
(with V2′ ) 1-4; based on the assignments of the LIF study),
the experimental transition energies are smaller than the
corresponding computed energies by over 60-145 cm-1 (see
Table 5). In addition, the experimental vibrational spacings
of between ∼498 and 463 cm-1 are significantly smaller than
the corresponding computed values of between 538 and 498
cm-1. The latter, larger computed vibrational spacings are
reasonable for a progression involving the bending mode,
which has a ν2′ value of 569.2 (computed value) or 563.87
(experimental value; see Table 2) cm-1. In this connection,
the experimental spacings seem to be too small for a
vibrational progression involving ν2′. Consequently, alterna-
tive assignments based on computed transition energies were
found for these observed vibrational components. Most of
the alternative assignments shown in Table 5 give better
agreement between the computed and experimental transition
energies, more reasonable vibrational spacings between the
vibrational components concerned, or larger computed FC
factors than those computed for the original assignments
given in the LIF study.1 Nevertheless, some alternative
assignments also give possible weaker overlapping vibra-
tional components (vide infra).

Similar to that shown in Table 5, computed (Ecalcd) and
experimental (Eexptl) excitation energies from the X̃1A′(0,0,0)
level to various Ã1A′′ (V1′,V2′,V3′) levels of DSiCl and also
excitation energies of some hot bands are compared in Table
6. Some possible alternative assignments are also included
in the table, based on what has been discussed above for
Table 5. For both HSiCl and DSiCl, it appears that most of
the vibrational assignments of combination bands involving
the HSi or DSi stretching mode given in ref 1 must be revised
on the basis of the results of FC calculations carried out in
the present investigation. In addition, hot bands arising from
the excited vibrational level of the X̃1A′ states of HSiCl and
DSiCl with V1′′ ) 1 (see Tables 5 and 6) have small
computed FC factors at a Boltzmann vibrational temperature
of 300 K, because ν1′′ has a relatively large value {1968.8
and 1434.4 cm-1 for HSiCl and DSiCl, respectively (ex-
perimental values; see Table 1); cf. the other two vibrational
modes}. Consequently, alternative assignments with larger
computed FC factors at similar transition energies were found
for these observed vibrational components, assigned to hot
bands arising from excited vibrational levels with V1′′ ) 1
in ref 1. However, it should be noted that a Boltzmann
vibrational temperature of 300 K has been assumed in the
FC factor calculations. HSiCl or DSiCl molecules produced
in an electric discharge of SiHCl3 or SiDCl3, respectively,
diluted in Ar through a pulsed jet1 may have a vibrational
temperature higher than 300 K or may be excited preferen-
tially in the HSi or DSi stretching modes (i.e., with a non-
Boltzmann distribution). Because in their formation, there

Table 3. Computed Relative Electronic Energies in eV
(cm-1) between the X̃1A′ and Ã1A′′ States of HSiCl
Obtained at Different Levels of Calculations

methoda Te

CASSCF/MRCI/AVQZb 2.6602 (21456.3)
CASSCF/MRCI+D/AVQZb 2.6306 (21217.4)
CASSCF/MRCI+D/ACVQZb (fc) 2.6291 (21205.3)
CASSCF/MRCI+D/AVCQZc 2.5488 (20557.1)
CASSCF/MRCI+D/AVCQZb 2.5628 (20670.2)
CASSCF/MRCI/AV5Zb 2.6533 (21400.3)
CASSCF/MRCI+D/AV5Zb 2.6311 (21220.9)
CBS1d +0.00022 (+1.8)
CBS2e +0.00047 (+3.7)
Core1f -0.06782 (-547.0)
Core2g -0.06634 (-535.1)
(CBS+Core)lower

h 2.5635 (20675.7)
(CBS+Core)upper

i 2.5652 (20689.5)
best theoretical Te valuej 2.564 ( 0.067 (20683 ( 538)
∆ZPE correctionk -0.02815 (-227.07)
best theoretical T0 valuel 2.54 ( 0.07 (20456 ( 560)
∆ZPE correctionk -0.01811 (-146.09)
best theoretical T0 valuel (DSiCl) 2.55 ( 0.07 (20537 ( 560)
absorptionm T0 2.5687 (20717.65)
LIFn T0 2.5687 (20717.769)
LIFn T0 (DSi35Cl) 2.5756 (20773.431)

a For the basis set used, see footnotes of Table 1. b At the
corresponding optimized geometries. c The X̃1A′state CASSCF/
MRCI+D/ACVQZ energy was computed at the X̃1A′ CCSD(T)/
AVQZ optimized geometry, because the computed θe value of the
X̃1A′ state obtained at the CASSCF/MRCI/ACVQZ level is
significantly larger than values obtained with the RCCSD(T)
method. It can be seen that this geometry effect on the computed
Te value is small (0.014 eV). d The correction of extrapolation to
the complete basis set (CBS) limit takes half of the difference
between the computed MRCI+D values obtained using the AVQZ
and AV5Z basis sets; see text. e The correction of extrapolation to
the complete basis set (CBS) limit employs the 1/X3 formula using
the computed MRCI+D values obtained with the AVQZ and AV5Z
basis sets; see text. f The correction of core electron correlation
takes the difference between the computed MRCI+D values
obtained using the AVQZ (with the default frozen core) and
ACVQZ {frozen only the Si and Cl 1s2 electrons} basis sets; see
text. g The correction of core electron correlation takes the
difference between the computed MRCI+D values obtained using
the ACVQZ basis set with and without the 2s22p6 electrons of Si
and Cl being correlated in the CASSCF/MRCI+D calculations.
h Assuming that the basis set extrapolation and core electron
correlation contributions are additive, this combination of the CBS
and core corrections gives the lower limit of the combined
contribution. i Assuming that the basis set extrapolation and core
electron correlation contributions are additive, this combination of
the CBS and core corrections gives the upper limit of the
combined contribution. j The best theoretical estimate takes the
averaged value of the upper and lower limits (see footnotes h and
i) and the uncertainty is the difference between the best estimate
and the MRCI+D/AVQZ value (in view of the rather large core
correlation contributions; see text). k The zero-point vibrational
energy correction has employed experimental fundamental
vibrational frequencies of the two states from refs 1 and 2,
respectively. l T0 ) Te + ∆ZPE. m From ref 28. n From ref 1.

Franck-Condon Simulations J. Chem. Theory Comput., Vol. 5, No. 3, 2009 571



is an increase in the HSi bond length from 1.464 Å {rs(HSi)
in HSiCl3}

26 to 1.515 Å in HSiCl (re
z value from ref 2).

The simulated absorption spectra of HSiCl and DSiCl at
a Boltzmann vibrational temperature of 300 K are shown in
Figures 1 and 2, respectively. The assignments of some major
vibrational progressions and some hot bands are also
indicated in these figures. It can be seen that the main
simulated vibrational progression is Ã1A′′ (0,V2′,0) r
X̃1A′(0,0,0), involving the bending mode in the upper state
of both HSiCl and DSiCl, as expected from the major
geometry change in the bond angle (see Tables 1 and 2) upon
excitation. Based on the computed FC factors, some com-
bination bands involving ν2′ and ν3′ should be excited,
particularly for HSiCl (Figure 1). The full simulated absorp-
tion spectra of HSiCl and DSiCl cover excitation energies
in the range between ∼20 000 and 26 000 cm-1. The band
maxima are at 21 837.25 and 22 384.08 cm-1 (experimental
values; Tables 5 and 6) corresponding to the Ã1A′′ (0,2,0)
r X̃1A′(0,0,0) and Ã1A′′ (0,4,0) r X̃1A′(0,0,0) vibrational
components for HSiCl and DSiCl, respectively. In addition
to the major vibrational progressions shown in Figures 1 and
2, there are a large number of minor combination bands and
hot bands according to the FC factor calculations (the lists
are available upon request from the authors).

A portion of the simulated absorption spectrum of HSiCl
is compared with the corresponding portion of the experi-
mental LIF spectrum1 in Figure 3 (top and bottom traces,
respectively). Computed relative FC factors in the same
spectral region are also shown as a bar diagram in Figure 3
(middle) to show some vibrational components, which are
very close in energy and hence cannot be resolved in the
simulated spectrum with a fwhm of 10 cm-1. It can be seen
from Figure 3 that the agreement between the simulated
absorption and experimental LIF spectra is reasonably good,
bearing in mind the spread of the rotational structure and
uncorrected intensity (frequency-dependent laser intensity
and detector sensitivity) of the experimental spectrum and
that the published experimental LIF spectrum may consist
of different fragment portions recorded under different
experimental conditions. In any case, the assignments of the
main vibrational structure given by ref 1 are confirmed by
our spectral simulation. However, the weak hot bands
assigned to 11

120
1 and 11

120
2 in the experimental LIF

spectrum have very small computed relative FC factors
(0.003 and 0.004, with the maximum value set to 100; see
Table 5) and hence do not appear in the simulated spectrum
with a Boltzmann vibrational temperature of 300 K. Instead,
the 21

2 and 21
130

1 hot bands are found in the simulated
absorption spectrum to be roughly in the position of the weak
structure assigned to the 11

120
1 hot band in the experimental

LIF spectrum and to have more intensity (see also Table 5).
In addition, computed FC factors (the bar diagram in the
middle of Figure 3) suggest that there are some weak hot
bands, namely 31

1, 31
2, 20

131
1, 20

131
2, and 20

231
1, underneath

the main 00
0, 30

1, 20
1, 20

130
1, and 20

2 vibrational components,
respectively (see also Table 5).

Portions of the simulated absorption and experimental LIF
spectra of DSiCl are compared in Figure 4 (bottom and top
traces). Similar to HSiCl discussed above, the general

Table 4. Computed Vibrational Energies (cm-1) of the X̃1A′
State of HSiCl and DSiCl and Their Assignments and the
Corresponding Experimental Values25 from the SVL
Emission (DF, Dispersed Fluorescence) Study of Ref 2

HSiCl DSiCl

assignment DF calcd DF Calcd

11 1968.8 1973.1 1434.4 1436.5
12 3870.1 3879.3 2832.9 2837.5
21 805.9 805.5 592.3 592.2
22 1607.7 1604.9 1183.6 1180.8
23 2400.7 2398.5 1769.0 1765.9
24 3190.9 3186.7 2354.4 2347.7
25 3977.5 3969.6 2932.6 2926.2
26 4755.5 4747.3 3509.2 3501.7
27 5526.4 5519.8 4082.7 4074.0
28 6292.6 6287.6 4652.2 4643.6
29 5217.7 5210.5
210 5781.6 5776.0
211 6338.0 6336.6; 6343.4
212 6893.3 6881.1; 6913.8
31 522.8 521.8 518.1 517.1
32 1037.9 1039.7 1031.2 1030.4
33 1553.5 1553.5
34 2061.5 2063.4
1121 2758.7 2763.9 2020.3 2021.8
1122 3543.6 3548.5 2603.4 2605.3
1123 4324.9 4327.5 3184.3 3184.2
1124 5100.9 5101.1 3759.0 3759.7
1125 5865.5 5869.4 4333.6 4331.7
1126 6628.6 6633.0 4901.6 4900.7
1127 7384.4 7381.8; 7393.2 5466.6 5466.7
1128 6029.6 6030.3
1131 2491.4 2495.9 1952.1 1953.3
1231 4390.4 4403.0
2131 1324.8 1323.9 1109.4 1107.0
2231 2125.0 2119.9 1698.3 1693.2
2331 2914.8 2910.4 2280.7 2276.1
2431 3700.9 3695.7 2863.6 2855.6
2531 4458.0 4475.8 3439.2 3432.1
2631 5260.0 5250.9 4016.3 4005.5
2731 6027.2 6021.4 4584.7 4576.0
2831 6787.0 6788.9 5154.1 5143.9
2931 7546.3 7557.8 5717.0 5710.6
21031 6279.4 6279.2
21131 6835.8 6834.1
2132 1841.3 1838.2 1622.1 1617.8
2232 2634.9 2631.0 2205.3 2201.8
2332 3423.6 3418.3 2786.4 2782.4
2432 4206.3 4200.6 3365.8 3359.8
2532 4987.3 4978.0 -
2632 5757.3 5750.9 4512.3 4505.5
2732 6522.3 6520.5 5081.1 5074.5
2832 5647.6 5642.2
2932 6211.7 6210.4
21032 6770.4 6773.9
2133 2349.6 2348.6
2233 3141.8 3138.0
2333 3926.3 3922.3
2433 4706.0 4701.6 3864.8 3860.1
2533 5484.3 5476.5 4438.2 4432.5
2633 5008.1 5002.4
2733 5574.8 5571.6
2134 2855.2 2855.0
2234 3643.9 3641.1
2334 4425.8 4422.3
2434 5202.2 5199.0
2534 5974.2 5972.8
112131 3279.4 3283.0 2535.6 2537.1
112231 4063.9 4064.3 3116.9 3117.2
112331 4836.8 4840.1
112431 5608.2 5610.6 4271.9 4267.0
112531 6374.0 6376.3 4837.2 4836.9
112631 7134.0 7138.2
122131 5165.6 5174.5
122231 5931.9 5941.6
122331 6693.1 6704.1
122431 7449.6 7463.1
112132 3047.1 3047.5
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agreement between theory and experiment is reasonably
good, and most of the assignments of the main vibrational
structure can be confirmed. However, the 30

2 and 10
1

vibrational components have very small computed FC factors
(0.3 and 0.02, respectively; see Table 6) and hence are not

observable in the simulated absorption spectrum (Figure 3
bottom trace). Nevertheless, such discrepancies between the
simulated absorption and experimental spectra could be
because the latter has not been corrected for frequency
dependent intensity or because it consists of different portions

Table 5. Computed (Ecalcd) and Experimental (Eexptl; from ref 1) Excitation Energies (in cm-1) from the X̃1A′(0,0,0) Vibronic
Level to the Ã1A′′ (v1′,v2′,v3′) Levels of HSiCl, Some “Hot” Bands with the Computed Franck-Condon (FC) Factors, and
Possible Alternative Assignments Based on the Computed FC factors and Anharmonic Vibrational Energies (See Text)

LIF calculation

(v1′,v2′,v3′) Eexptl Ecalcd [FCF] alternative assignments

(0,0,0) 20717.769 20717.769a [18.3] 20722.9 [1.5] 31
1

(1,0,0) 22464.85 22488.9 [0.1] 22422.1 [6.1] 20
431

0; 22440.3 [0.4] 20
532

0

(0,1,0) 21281.64 21287.0 [63.7] 21288.3 [3.7] 20
131

1

(0,2,0) 21837.25 21848.0 [100.0] 21845.0 [3.1] 20
231

1

(0,3,0) 22384.94 22400.4 [84.2]
(0,4,0) 22925.27 22943.9 [33.5]
(0,0,1) 21250.09 21244.8 [6.7] 21245. [0.9] 31

2

(0,0,2) 21777.89 21767.3 [1.2]
(0,0,3) 22301.80 22285.4 [0.1]
(0,0,4) 22819.76 22799.0 [0.005]
(1,1,0) 22971.92 23032.9 [0.8] 23000.0 [1.0] (1,0,1); 22958.1 [3.7] 20

531
0

(1,2,0) 23470.37 23571.2 [0.9] 23479.9 [4.2] (0,5,0)
(1,3,0) 23955.77 24064.7 [1.5] 23977.8 [0.8] (0,6,0)
(1,4,0) 24419.72 24564.2 [1.6] 24428.8 [0.2] (0,5,2)
(2,1,0) 24445.82 24534.0 [0.5] 24450.0 [0.1] (4,3,0)
(1,0,1) 23008.76 23000.0 [1.0]
(1,0,2) 23547.89 23504,9 [2.7] 23535.0 [2.8] (1,1,1); 23542.9 [0.2] 10

120
331

0

(1,0,3) 24081.38 24002.3 [4.7] 24064.7 [1.5] (1,3,0); 24069.6 [0.2] 10
120

131
3

(2,0,1) 24527.72 24600.9 [0.03] 24520.0 [1.6] (1,1,3); 24519.8 [0.2] 10
131

5

(0,1,1) 21808.75 21810.2 [30.1] 21807.6 [3.4] 20
131

2

(0,2,1) 22357.40 22366.9 [57.7]
(0,3,1) 22896.20 22913.3 [55.7]
(0,4,1) 23427.25 23448.8 [18.6] 23421.9 [16.2] (0,3,2)
(0,1,2) 22331.55 22329.3 [6.3]
(0,2,2) 22871.88 22882.0 [14.6]
(0,3,2) 23399.93 23421.9 [16.2] 23393.5 [1.9] (0,2,3)
(0,1,3) 22849.84 22844.3 [0.6]
(0,2,3) 23378.10 23393.5 [1.9] 23380.3 [0.3] 20

231
4

(0,1,4) 23362.73 23355.4 [0.03]
(1,1,1) 23508.38 23535.0 [2.8] 23504.9 [2.7] (1,0,2)
(1,2,1) 23999.81 24104.6 [0.3] 24002.3 [4.7] (1,0,3)
(1,3,1) 24479.14 24634.2 [0.03] 24489.4 [4.0] (1,0,4)
(1,1,2) 24039.56 24030.7 [3.9]
11

1 20496.11 20515.8 [0.002] 20481.5 [2.0] 21
1

11
2 22023.31 22095.2 [0.0008] 22038.8 [0.015] 21

130
3; 22031.5 [0.003] 21

131
4

11
120

1 21003.21 21059.7 [0.003] 21004.7 [0.17] 21
130

1; 21042.7 [1.0] 21
2

11
120

2 21501.55 21561.9 [0.004] 21523.8 [0.006] 21
130

2

11
120

3 21986.95 22091.6 [0.0008] 21993.5 [0.0002] 21
030

4

11
130

1 21040.03 21026.8 [0.003] 21042.5 [1.0] 21
2

11
130

2 21578.89 21561.9 [0.004] 21594.9 [0.006] 21
3; 21561.3 [0.003] 21

230
1

11
120

130
1 21539.59 21531.7 [0.004] 21523.8 [0.006] 21

130
2

11
120

130
2 22030.93 22029.1 [0.004] 21042.5 [1.0] 21

2; 21043.0 [0.03] 21
231

1

21
0 19911.81 19912.3 [1.2]

21
1 20475.66 20481.5 [2.0]

21
030

1 20444.15 20439.3 [0.1] 20443.5 [0.02] 21
031

2

10
121

4 23614.19 23828.8 [0.001] 23623.4 [0.08] 21
530

2

10
221

1 23640.28 23728.5 [0.04] 23644.5 [0.07] 21
430

3

10
121

330
1 23673.79 23683.9 [0.3]

31
0 20194.95 20195.9 [0.03]

20
131

0 20758.75 20765.2 [0.04]
20

231
0 21314.45 21326.2 [1.1]

20
331

0 21861.91 21878.6 [4.0]
20

431
0 22402.45 22422.1 [6.0]

31
1 20727.35 20722.9 [1.5]

31
2 21255.11 21245.5 [0.9]

31
4 22296.72 22277.2 [0.02]

10
120

131
0 22449.06 22511.0 [0.008] 22422.1 [6.1] 20

431
0

10
120

231
0 22947.41 23049.4 [0.08] 22958.1 [3.7] 20

531
0

10
131

1 22485.95 22478.1 [0.004] 22488.9 [0.1] (1,0,0); 22489.6 [0.6] 20
531

1

10
131

2 23024.83 22983.0 [0.04] 23032.9 [0.8] (1,1,0); 23049.4 [0.08] 10
120

231
0

20
131

1 21285.93 21288.3 [3.7]
20

331
1 22373.22 22391.4 [0.3]

10
120

131
1 22985.56 23013.2 [0.01] 22971.8 [0.3] 20

632
0 ; 22983.0 [0.04] 10

131
2

21
031

1 19924.67 19920.9 [0.09] 19912.3 [1.2] 21
0

a Fixed to the experimental value.
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recorded under different experimental conditions, as men-
tioned above. Similar to HSiCl, computed FC factors suggest
some contributions from weak hot bands to the main
vibrational structure (see the bar diagram in the middle Figure
4), but they are so close in energy that they will not be
resolved in the simulated spectrum with a fwhm of 10 cm-1.

Overall, it can be concluded that the agreement between the
simulated absorption and experimental LIF spectra of HSiCl
and DSiCl is good.

The simulated and experimental Ã1A′′ (0,0,0)f X̃1A′ SVL
emission spectra of HSiCl are compared in Figure 5 (top
and second from top, respectively). It can be seen that the

Table 6. Computed (Ecalcd) and Experimental (Eexptl) Excitation Energies (in cm-1) from the X̃1A′(0,0,0) Vibronic Level to the
Ã1A′′ (v1′,v2′,v3′) Levels of DSiCl, Some “Hot” Bands, with the Computed Franck-Condon (FC) Factors, and Possible
Alternative Assignments Based on the Computed FC factors and Anharmonic Vibrational Energies (See Text)

LIF calculation

(v1′,v2′,v3′) Eexptl Ecalcd [FCF] alternative assignments

(0,0,0) 20773.431 20773.431a [4.9]
(1,0,0) 22074.23 22090.4 [0.02] 22061.2 [0.05] 21

230
2

(0,1,0) 21182.08 21186.6 [23.7] 21203.9 [2.0] 20
131

1

(0,2,0) 21587.19 21595.8 [57.6] 21609.9 [3.8] 20
231

1

(0,3,0) 21988.07 22001.6 [90.5] 22012.3 [4.6] 20
331

1

(0,4,0) 22384.08 22403.7 [100.0] 22411.0 [4.1] 20
431

1

(0,5,0) 22774.51 22801.7 [78.8] 22775.6 [0.09] (0,1,3); 22805.8 [2.6] 20
531

1

(0,6,0) 23158.20 23194.9 [42.3] 23156.6 [0.009] (1,0,2); 23197.6 [1.3] 20
631

1

(0,7,0) 23533.85 23584.1 [13.3] 23545.5 [0.04] (1,1,2)
(0,8,0) 23899.33 23974.2 [1.1] 23881.2 [0.3] 20

931
0; 23903.2 [0.06] 10

220
331

0

(0,9,0) 24252.87 24369.4 [0.8] 24237.4 [0.07] (0,6,2); 24259.3 [0.01] 20
631

3; 24263.3 [0.03] 10
220

431
0

(0,10,0) 24591.74 24816.5 [0.3] 24571.4 [0.2] 10
121

030
8

(0,0,1) 21316.60 21311.1 [2.0]
(0,0,2) 21854.48 21844.1 [0.3] 21855.3 [0.08] 31

3

(1,1,0) 22464.33 22485.9 [0.3] 22460.2 [0.3] 21
230

3

(1,2,0) 22849.09 22876.5 [1.4] 22855.8 [0.4] 21
230

4

(1,3,0) 23228.62 23262.4 [3.9] 23194.9 [41.2] (0,6,0)
(1,4,0) 23601.73 23643.6 [6.4] 23584.1 [13.3] (0,7,0); 23591.4 [0.3] 20

731
1

(1,5,0) 23966.83 24020.2 [6.6] 23974.2 [1.1] (0,8,0); 23951.1 [0.3] 10
121

530
1

(1,6,0) 24321.72 24398.2 [2.4] 24309.3 [0.1] (1,3,2)
(1,7,0) 24663.59 24748.5 [0.8] 24686.8 [0.09] (1,4,2); 24646.5 [0.08] 10

120
831

0

(2,1,0) 23641.52 23689.1 [0.00007] 23643.6 [6.4] (1,4,0)
(2,2,0) 24001.68 24056.6 [0.07] 24020.2 [6.6] (1,5,0)
(2,3,0) 24353.33 24420.3 [0.6] 24369.4 [0.8] (0,9,0); 24358.6 [0.1] 21

930
1

(1,0,1) 22615.03 22625.9 [0.03] 22602.6 [3.0] 21
6

(0,1,1) 21722.07 21721.1 [8.7]
(0,2,1) 22123.74 22127.0 [18.5]
(0,3,1) 22521.05 22529.4 [24.1]
(0,4,1) 22913.49 22928.1 [20.5]
(0,5,1) 23299.85 23322.9 [11.2]
(0,6,1) 23679.05 23714.7 [3.6] 23682.4 [0.001] (1,0,3); 23645.2 [0.1] 21

630
2

(0,1,2) 22256.84 22250.7 [1.3]
(0,2,2) 22655.04 22653.6 [2.2]
(0,3,2) 23048.72 23052.4 [2.2]
(0,4,2) 23437.17 23448.0 [1.3] 23448.2 [0.3] 20

431
3

(1,1,1) 23001.42 23018.2 [0.2] 22991.8 [3.3] 21
7

(1,2,1) 23382.94 23405.4 [0.7] 23381.9 [1.5] 21
8

(1,3,1) 23758.63 23788.0 [1.3] 23777.2 [0.02] 21
9

(1,4,1) 24127.72 24166.4 [1.4] 24108.6 [0.5] (0,7,1)
(1,5,1) 24488.16 24543.3 [0.9] 24489.2 [0.04] 21

830
2

(2,1,1) 24175.30 24219.1 [0.003] 24166.4 [1.8] (1,4,1); 24169.7 [0.2] 10
120

431
2

(2,2,1) 24531.29 24583.5 [0.03] 24543.1 [0.9] (1,5,1);
(2,3,1) 24879.31 24943.3 [0.005] 24910.1 [0.1] (1,6,1)
(1,1,2) 23533.47 23545.5 [0.04]
(1,2,2) 23911.09 23929.5 [0.1]
(1,3,2) 24282.93 24309.3 [0.1]
(1,4,2) 24647.50 24686.8 [0.09] 24646.5 [0.08] 10

120
831

0

11
1 20640.08 20653.9 [0.006] 20669.4 [0.05] 21

1; 20614.1 [0.3] 21
131

1

11
2 21841.02 21879.1 [0.0004] 21844.1 [0.3] (0,0,2); 21855.1 [0.08] 31

3

11
120

1 21029.73 21049.4 [0.03] 21020.1 [0.2] 21
231

1

11
120

2 21414.9 21440.0 [0.07] 21409.3 [2.3] 21
3; 21422 [0.1] 21

331
1

11
120

3 21794.18 21826.0 [0.1]
11

120
4 22167.29 22207.1 [0.09] 22164.4 [0.04] 20

632
0

11
220

1 22207.16 22252.6 [0.003] 22209.4 [0.8] 21
5; 22207.1 [0.09] 11

120
4

11
220

2 22567.16 22620.1 [0.01] 22583.7 [0.04] 11
120

5; 22582.7 [0.03] 21
230

3

11
220

3 22919.06 22983.8 [0.03] 22928.1 [20.5] (0,4,1); 22930.9 [2.2] 20
431

2

11
120

230
1 21948.52 21968.9 [0.01] 21937.2 [0.05] 21

330
1

11
120

330
1 22324.00 22351.5 [0.02] 22335.9 [0.9] 21

430
1

21
1 20589.41 20594.3 [3.5]

21
2 20994.8 21003.6 [4.4]

20
231

0 21069.1 21078.7 [0.004] 21069.9 [0.004] 22
130

2

20
331

0 21470.0 21484.4 [0.4] 21472.6 [0.01] 22
230

2

20
231

1 21605.65 21609.9 [3.8]
20

331
1 22003.00 22012.3 [4.6]

20
131

2 21728.62 21733.6 [1.3]

a Fixed to the experimental value.
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agreement is very good (bearing in mind that the intensity
of the 00

0 vibrational component would be affected by the
scattered excitation laser light). Specifically, in addition to
the main Ã1A′′ (0,0,0) f X̃1A′(0,V2′′ ,0) progression, the
simulated spectrum shows only one weak progression, which

is Ã1A′′ (0,0,0) f X̃1A′(0,V2′′ ,1), in agreement with the
experimental spectrum. Also shown in Figure 5 are the
simulated spectra reported in ref 2 obtained employing the
harmonic oscillator model (bottom and second from bottom
traces in Figure 5; see ref 2 for details of the spectral
simulations). Comparison between all the simulated and
experimental spectra shows clearly that the simulated
spectrum reported here, which includes anharmonicity, is
superior to previously simulated spectra, which have ignored
anharmonicity. Moreover, a more detailed comparison
between the simulated spectrum obtained here (top trace in
Figure 5) and the experimental SVL emission spectrum
reported in ref 2 (second from top trace in Figure 5) suggests
a gradual loss of intensity in the experimental spectrum
toward low emission energy (i.e., larger displacement from
the excitation line). Specifically, the strongest vibrational
component in the simulated spectrum (top trace in Figure
5) is the Ã1A′′ (0,0,0) f X̃1A′(0,3,0) component, while that
in the experimental spectrum (second from top trace in Figure

Table 7. RCCSD(T)/aug-cc-pV5Z and CASSCF/MRCI+D/
aug-cc-pV5Z PEFs of the X̃1A′ and Ã1A′′ States of HSiCl
{Cijk; See Text and Eq 1}

(i,j,k)a X̃1A′ Ã1A′′

200 0.276297 0.252828
020 0.298425 0.312888
002 0.099921 0.049566
110 0.011694 -0.014379
101 -0.007743 0.014213
011 0.045098 0.014961
300 -0.425380 -0.494550
030 -0.453991 -0.507081
003 0.012296 -0.006902
210 0.014470 -0.005445
201 -0.000684 0.004654
120 -0.024499 -0.009130
021 -0.066495 -0.031292
102 -0.024798 -0.043138
012 -0.097468 -0.044741
111 -0.037525 -0.031976
400 0.440379 0.443721
040 0.483647 0.550709
004 0.027711 0.009272
310 -0.010392 0.006362
301 0.004372 -0.011545
130 0.022119 0.024504
031 0.035256 0.006376
103 -0.025911 0.010411
013 0.019163 0.013650
220 0.002746 0.021209
202 -0.033945 -0.034754
022 0.036571 0.012030
211 -0.003977 0.007443
121 0.050357 0.018099
112 0.024835 0.028248
050 -0.388735 -0.541210
060 0.155526 0.286202
005 0.040039 0.081228
006 0.048156 0.062328
500 -0.356954 -0.256333
600 0.159079 0.084583
� -0.027306 -0.200886

a i, j, and k are subscripts (indices) in Cijk {see eq 1} and with
the restriction of i + j + k g 2.

Table 8. Computed Vertical Excitation Energies (Tv in eV)
of Some Low-Lying Singlet and Triplet States of HSiCl
from CASSCF/MRCI/AVQZ(spd,sp) Calculationsa at the
RCCSD(T)/AVQZ Geometry of the X̃1A′ State

states configuration CASSCF Cmax
b MRCI MRCI+D

X̃1A′ (13a′)2(3a′′ )2 0 0.928 0 0
(1)3A′′ (13a′)1(4a′′ )1 1.48 0.937 1.649 1.684
(1)1A′′ (13a′)1(4a′′ )1 2.88 0.911 2.863 2.823
(1)3A′ (13a′)1(14a′)1(3a′′ )2 4.52 0.930 4.651 4.656
(2)1A′ (13a′)1(14a′)1(3a′′ )2 5.83 0.881 5.720 5.614

a For the X̃1A′, (1)3A′, (1)1A′′ , and (1)3A′ states, the CASSCF
calculations are average state calculations for four states. For the
second 1A′ state, the CASSCF calculations are average state
calculations for the X̃1A′ and (2) 1A′ states. Only the s, p, and d
functions were used for Si and Cl, and the s and p functions were
used for H. b The largest computed CI coefficients in the MRCI
calculations associated with the main electronic configuration
(shown under configuration).

Figure 1. Simulated Ã1A′′ r X̃1A′ absorption spectrum of
HSiCl at a Boltzmann vibrational temperature of 300 K with
the assignments of some major vibrational progressions.

Figure 2. Simulated Ã1A′′ r X̃1A′ absorption spectrum of
DSiCl at a Boltzmann vibrational temperature of 300 K with
the assignments of some major vibrational progressions.
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5) is the Ã1A′′ (0,0,0)f X̃1A′(0,2,0) component. In addition,
for higher members of the Ã1A′′ (0,0,0) f X̃1A′(0,v2′′ ,0)
series, the relative intensities in the simulated spectrum are
slightly stronger than those in the experimental spectrum.
Assuming that the experimental SVL emission spectra
recorded with the type of detector used in ref 2 (a red-
sensitive photomultiplier) have not been corrected for
wavelength dependence of detector sensitivity, which is
expected to decrease toward low emission energy (see for
example ref 27), it is anticipated that the simulated spectrum
obtained here using the best ab initio geometries would match
even better the observed spectrum if the experimental
spectrum were corrected for wavelength dependent detector
sensitivity. The comparison between the simulated and
experimental Ã1A′′ (0,0,0)f X̃1A′ SVL emission spectra of
DSiCl, as shown in Figure 6, yields very similar conclusions.
First, the agreement between theory and experiment is very
good, and would be better if the experimental spectra were
corrected for wavelength dependence of detector sensitivity.
Second, the excellent agreement between simulated and
experimental Ã1A′′ (0,0,0)f X̃1A′ SVL emission spectra of
HSiCl and DSiCl leads to the conclusions that the PEFs and
the best theoretical geometrical parameters employed for the
two states involved in the FC factor calculations are highly
reliable.

Hostutler et al.2 have also reported the experimental
Ã1A′′ (0,1,0)f X̃1A′ and Ã1A′′ (0,2,1)f X̃1A′ SVL emission
spectra of DSiCl, and they are compared with the cor-
responding simulated spectra in Figures 7 and 8, respectively.

For the Ã1A′′ (0,2,1) f X̃1A′ SVL emission, there are three
major vibrational progressions, namely, Ã1A′′ (0,2,1) f
X̃1A′(0,V2′′ ,1), Ã1A′′ (0,2,1)f X̃1A′(0,V2′′ ,0), and Ã1A′′ (0,2,1)
f X̃1A′(0,V2′′ ,2), in both the simulated and experimental
spectra (Figure 8). The strongest progression is the
Ã1A′′ (0,2,1)f X̃1A′(0,V2′′ ,1) progression, with the 2031 and
2131 components being strongest in the series in both the
simulated and experimental spectra. The agreement between
the simulated and observed vibrational structures for this
vibrational progression may be considered as acceptable.
However, the overall agreement between the simulated and
experimental vibrational structure of this SVL emission
cannot be considered as good. For the Ã1A′′ (0,1,0) f X̃1A′
SVL emission, the agreement between the simulated and
experimental spectra for the relatively weak vibrational
structure in the ∼4000-6000 cm-1 region of the Ã1A′′ (0,1,0)
f X̃1A′ SVL emission spectrum can be considered as
reasonably good (see Figure 7). However, the dominant
vibrational structure of the Ã1A′′ (0,1,0) f X̃1A′(0,V2′′ ,0)
series, for V2′′ ) 0-5, in the 0-3000 cm-1 region of the
simulated spectrum (top trace of Figure 7) increases in
intensity and then decreases gradually, but this behavior is
not displayed in the experimental spectrum (bottom trace of
Figure 7). In the experimental spectrum, the 22

1 component
is strong as in the simulated spectrum, but the 21

1 and 23
1

components are considerably weaker than those in the
simulated spectrum. In addition, the 31 (or 20

131
0) component

of the Ã1A′′ (0,1,0) f X̃1A′(0,V2′′ ,1) series (i.e., the 2n31

series, the notation used in ref 2; bottom trace of Figure 7)
is very strong in the experimental spectrum, but the whole

Figure 3. Computed Franck-Condon factors (the bar dia-
gram in the middle), the simulated Ã1A′′ r X̃1A′ absorption
spectrum (bottom trace) of HSiCl at a Boltzmann vibrational
temperature of 300 K in the 20 600-22 200 cm-1 region with
the assignments of some major vibrational components, and
the corresponding portion of the experimental LIF spectrum
of HSiCl (top trace) reported by Harper and Clouthier.1

Figure 4. Computed Franck-Condon factors (the bar dia-
gram in the middle), the simulated Ã1A′′r X̃1A′ absorption
spectrum (bottom trace) of DSiCl at a Boltzmann vibrational
temperature of 300 K in the 20600-22200 cm-1 region with
the assignments of some major vibrational components, and
the corresponding portion of the experimental LIF spectrum
of DSiCl (top trace) reported by Harper and Clouthier.1
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Ã1A′′ (0,1,0)f X̃1A′(0,V2′′ ,1) series is weak in the simulated
spectrum. Nevertheless, it should be noted that the energy
positions of all the observed vibrational components in the
two experimental SVL emission spectra of DSiCl considered,
namely, the Ã1A′′ (0,1,0) f X̃1A′ and Ã1A′′ (0,2,1) f X̃1A′
spectra, are consistent with those of the X̃1A′ state of DSiCl
(see also Table 4 and discussion in Table 4 given above),
suggesting that the emissions are to vibrational levels of the
X̃1A′ state of DSiCl, and the molecular carrier is DSiCl. The
discrepancies between simulated and experimental structures
of these two SVL emission spectra of DSiCl are in the
relative intensities of some vibrational components. Never-
theless, in view of the fact that agreement is observed in
vibrational component positions, but not in the relative
intensities, it appears that, each of the two SVL emission
spectra considered have major contributions from the

Ã1A′′ (0,1,0) f X̃1A′ and Ã1A′′ (0,2,1) f X̃1A′ SVL emis-
sions, respectively. However, the comparison between the
simulated and experimental vibrational structures, as shown
in Figures 7 and 8, suggests that other emissions of DSiCl
are involved in the experimental spectra, that is, other states
of DSiCl are accessed, as well as the Ã1A′′ (0,1,0) and
Ã1A′′ (0,2,1) levels, by the excitation laser energy used to
record the experimental spectra.

Concluding Remarks

In summary, high-level ab initio calculations have been
carried out on the X̃1A′ and Ã1A′′ states of HSiCl, and FC
factors including allowance for anharmonicity have been

Figure 5. Simulated Ã1A′′ (0,0,0) f X̃1A′ SVL emission spectrum of HSiCl (top trace) and the corresponding experimental and
simulated spectra reported by Hostutler et al.2

Figure 6. Simulated Ã1A′′ (0,0,0) f X̃1A′ SVL emission
spectrum of DSiCl (bottom trace) and the corresponding
experimental and simulated spectra reported by Hostutler et
al.2 (top trace).

Figure 7. Simulated Ã1A′′ (0,1,0) f X̃1A′ SVL emission
spectrum of DSiCl and the assignments of the two major
vibrational progressions (top trace) and the corresponding
experimental spectrum reported by Hostutler et al.2 (bottom
trace).
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computed between these two states of HSiCl and DSiCl.
Agreement between theory and experiment for the minimum-
energy geometrical parameters, vibrational frequencies, rela-
tive electronic energy, and the Ã1A′′ (0,0,0) f X̃1A′ SVL
emission spectra of HSiCl and DSiCl is very good. Simulated
Ã1A′′ r X̃1A′ absorption spectra of HSiCl and DSiCl also
agree reasonably well with corresponding experimental LIF
spectra. Such good agreements between theory and experi-
ment for the absorption/LIF and Ã1A′′ (0,0,0) f X̃1A′ SVL
emission spectra of HSiCl and DSiCl suggest that the PEFs
and the best estimated geometrical parameters of the two
states of HSiCl employed in the FC calculations, and the
computed anharmonic vibrational wave functions and ener-
gies of the two states of HSiCl and DSiCl are highly reliable.
In fact, in view of the fact that the detector employed in
recording the experimental Ã1A′′ (0,0,0) f X̃1A′ SVL
emission spectra of HSiCl and DSiCl has a characteristic of
discriminating against signals toward low emission energies
and the recorded spectra have most likely not been corrected
for frequency dependent sensitivity of the detector, the
simulated spectra reported here are almost certainly more
reliable than the experimental spectra.

However, for the Ã1A′′ (0,1,0) f X̃1A′ and Ã1A′′ (0,2,1)
f X̃1A′ SVL emissions of DSiCl, there are significant
discrepancies between simulated and experimental spectra.
Specifically, the relative intensities of the simulated and
experimental vibrational structures do not match very well,
although the energy positions of almost all observed vibra-
tional components agree with the computed vibrational
energies of the X̃1A′ state, suggesting that the emissions are
to the X̃1A′ state of DSiCl. It has been mentioned above in
the discussion on the simulated absorption spectra of DSiCl
that some hot bands are computed to be underneath some
vibrational components of the main Ã1A′′ r X̃1A′(0,0,0)
absorption band. For example, for the simulated vibrational
component of DSiCl at a computed absorption energy of
21186.6 cm-1, in addition to the Ã1A′′ (0,1,0)′′ r X̃1A′(0,0,0)
transition (see Table 6 and Figure 4), the 20

131
1, 11

130
1, 22

531
0,

and 10
121

232
0 hot bands with the computed absorption

energies of 21203.9, 21189.4, 21183.8, and 21183.3 cm-1

are also expected to contribute because of the proximity of
their absorption energies (though only slightly according to
the computed FC factors of ∼2.0, 0.002, 0.002, and 0.00005,
respectively). In this connection, the dispersed fluorescence
spectrum recorded at an excitation energy of 21186.6 cm-1

(computed value; the experimental value is 21182.08 cm-1)
and assigned to the Ã1A′′ (0,1,0)f X̃1A′ SVL emission may
have contributions also from SVL emissions from the Ã1A′′
(0,1,1), (1,0,1), (0,5,0), and (1,2,0) levels (being accessed
via hot band transitions), in addition to the Ã1A′′ (0,1,0) f
X̃1A′ SVL emission. However, including these SVL emis-
sions arising from hot band transitions in the simulation of
the experimental dispersed fluorescence spectrum still did
not give a satisfactory agreement between theory and
experiment. Although some observed vibrational features
may be accounted for by parts of the vibrational structures
of these SVL emissions arising from hot bands, the overall
agreement cannot be considered as good. In fact, the
agreement is far from “fingerprint identification”, as for the
Ã1A′′ (0,0,0) f X̃1A′ SVL emissions of HSiCl and DSiCl.
The main difficulty, particularly in the case of the dispersed
fluorescence spectrum assigned to the Ã1A′′ (0,1,0) f X̃1A′
SVL emission, is that the vibrational structures of the
simulated SVL emission spectra always display a gradual
change in the relative intensities over a number of vibrational
components (i.e., a gradual increase followed by a gradual
decrease over at least four vibrational components; see for
example the simulated spectra in Figures 5-8). However,
the experimental Ã1A′′ (0,1,0) f X̃1A′ SVL emission spec-
trum has the 31 and 22 vibrational components being very
strong in the 2n31 and 2n series (see Figure 7 bottom trace).

To investigate this further, we have carried out preliminary
calculations on some low-lying singlet and triplet states of
HSiCl to see whether there are some other states nearby,
which may contribute to the SVL emission spectra of HSiCl
or DSiCl. Results of some CASSCF/MRCI calculations are
summarized in Table 8. It can be seen that the (1)3A′ and
(2)1A′ states are significantly higher in energy in the vertical
excitation region (from the X̃1A′ state) than the Ã1A′′ state,
while the (1)3A′′ state is below the Ã1A′′ state. Further
geometry optimization and vibrational frequency calculations
on the lowest 3A′′ state were carried out and gave re(HSi) )
1.485 Å, r(SiCl) ) 2.051 Å, θ(HSiCl) ) 115.5°, ω1 ) 2178
cm-1, ω2 ) 652 cm-1, and ω3 ) 552 cm-1 at the RCCSD(T)/
AVQZ level. The computed Te and Tv values at this level
are 1.484 and 1.702 eV, respectively. On the basis of these
calculations, it can be concluded that the lowest 3A′′ state is
the ã state, and the Tv of the ã3A′′ state is ∼0.84 eV (6775
cm-1) below the T0 of the Ã1A′′ state. Only very high
vibrational levels of the ã3A′′ state may overlap with low
vibrational levels of the Ã1A′′ state, and interaction between
the Ã and ã vibronic levels could occur via a spin-orbit
mechanism. We have also estimated the barriers to linearity
of the X̃1A′ (a 1Σ+ state in C∞V), ã3A′′ (a 3Π state with a
σ1π1 open-shell configuration) and Ã1A′′ states (a 1Π state
with a σ1π1 open-shell configuration) of HSiCl by carrying
out CASSCF/MRCI+D/AVQZ geometry optimization cal-
culations with the bond angle fixed to 179.5°. They are
∼3.11, 2.09, and 0.74 eV above their respective potential

Figure 8. Simulated Ã1A′′ (0,2,1) f X̃1A′ SVL emission
spectrum of DSiCl and the assignments of the three major
vibrational progressions (bottom trace) and the corresponding
experimental spectrum reported by Hostutler et al.2 (top trace).
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energy minima (the barriers to linearity of the ã and Ã states
are ∼3.37 and 3.57 eV above the potential energy minimum
of the X̃1A′ state). In DSiCl, the Ã1A′′ (0,1,0) and Ã1A′′ (0,2,1)
levels lie below the barriers to linearity of the X̃ and ã states.
Interaction between vibronic levels of the ã and Ã states
could lead to a change in vibrational character of their
vibrational levels above the minimum of the Ã1A′′ state and
a change in FC factors in the SVL spectra from those shown
in the simulated spectra in Figures 7 and 8. Clearly, further
experimental and computational investigations are required
to clarify the discrepancies between theory and experiment
for the Ã1A′′ (0,1,0) f X̃1A′ and Ã1A′′ (0,2,1) f X̃1A′ SVL
emission spectra of DSiCl.
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7616), 4 Place Jussieu 75252-Paris cédex, France, IFP Direction Chimie et

Physico-Chimie Appliquées, 1 & 4 AV. de Bois-Préau, 92852 Rueil-Malmaison cédex,
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Abstract: The adsorption modes of toluene, 2,3-dimethylbut-1-ene, and 2-methylthiophene on
the edges of Co(Ni)MoS nanocrystallites has been investigated with the ELF topological approach
of chemical bonding. The chemisorbed modes are characterized by the formation of bonding
basins linking the substrate to the catalytic sites. The electronic rearrangements within the
substrate are discussed. It is shown that a unique electronic descriptor, namely the metallic
atomic basin contribution to the substrate ELF basins, provides a sizable correlation with the
interaction energy.

1. Introduction

Hydrotreating reactions catalyzed by γ-alumina-supported
Co(Ni)MoS catalysts are playing a key role in industrial
refining in order to produce cleaner fuels.1 The Co(Ni)MoS
active phase has been widely studied by many experimental2

and theoretical techniques3 to provide an accurate description
of the catalyst at an atomic scale. The active phase consists
of MoS2 nanocrystallites with a deformed hexagonal 2D-
morphology and exposing two active edges, the so-called
“S-”and “M-edges”.3,4 In order to increase the activity of
the MoS2 active phase, promoters (Co or Ni) are substituted
to Mo atoms located at both edges of the crystallites. The
edge energies and atomic structures depend on the sulfiding
conditions and to the promoter coverage, and they have been
investigated by “first principles” calculations based on
periodic density functional theory in numerous previous
works.3-8 Furthermore, it has been shown that the 2D-
morphology (and as a result the type of edge sites) depends
on the nature and proportion of promoter (Co or Ni) at
edges.9 Depending on the reaction conditions, different
typical proportions of the promoter can be stabilized at the

edges, which induces different types of local arrangement
of the metal and sulfur atoms. Hence, specific conditions
can be found where the edges are fully covered by the
promoters and other cases where the edges are only partially
decorated by Co or Ni atoms, with some neighboring Mo
atoms. These different local environments are strongly
suspected to influence the catalytic reactivity10 and the
selectivity.11 Many DFT works have also performed adsorp-
tion energy calculations of sulfur organic molecules including
thiophene and dibenzothiophene4,12-17 and nitrogen organic
molecules.3,18,19 A recent DFT study has focused on the
determination of the most stable adsorption mode of 2,3-
dimethylbut-1-ene and 2-methylthiophene on the Co(Ni)MoS
edges.11 These molecules represent two important classes
of sulfur organic and olefin compounds present in hy-
drotreatment reactions of gasoline. This study has provided
an interpretation of the selective hydrodesulfuration of
2-methylthiophene based on the adsorption energy calculated
values. It is the subject of the present work to provide a more
fundamental understanding based on the nature of the
chemical bonding of these energy results. We will thus
furnish a theoretical description of the electronic interaction
between the adsorbed molecules and the active edges. In
addition, aromatics are an important family of hydrocarbons
molecules also present in hydrotreating reactions catalyzed
by Co(Ni)MoS catalysts.10,20 In order to achieve a coherent
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comparison including this family of reactant, the present
work will investigate the stable adsorption configuration of
toluene on CoMoS edges and also provide an electronic
analysis of its chemical bonding on the same edge sites.

The characterization of the bonding interactions between
the adsorbed molecules and the active sites is a key for the
chemical understanding of the catalytic process. The analysis
of the bonding is usually carried out by either rather crude
orbital-based methods or qualitative descriptions of electron
density maps. Only few published works use more rigorous
topological techniques such the AIM,21 the topology of the
electrostatic potential,22 or the ELF approach.23 Aray et al.
have recently published interesting analysis carried out with
AIM24-27 and also with the electrostatic potential.28-31

To our knowledge, the topological ELF approach has
already been used in surface science to characterize the
adsorption of CO and CN- on surfaces,32 F centers on MgO
surfaces,33 and the adsorption of Pd atoms on MgO, Al2O3,
and SiO2 surfaces.34

This paper aims to provide a description of the bonding
of adsorbed toluene, 2,3-dimethylbut-1-ene, and 2-methylth-
iophene molecules on promoted MoS2 edges based on the
ELF topological analysis in order to get a deeper insight on:

(1) the qualitative and quantitative aspects of bond
formation and charge transfers between the catalyst and the
substrate,

(2) the evolution of the bonds of the adsorbed species with
respect to the uncomplexed molecules.

For this purpose we have selected a representative sample
of four toluene, thirteen 2,3-dimethylbut-1-ene, and fourteen
2-methylthiophene adsorption modes on which the ELF
topological analysis has been carried out.

2. Methodology

2.1. The Topological Analysis of Electron
Distribution Functions. One of the goals of the topological
analysis of electron distribution functions is to provide a
partition of the geometrical space occupied by the chemical
system of interest (molecule, aggregate, polymer, 1-3 D
periodic system) into adjacent nonoverlapping volumes called
basins. These basins are thought as corresponding to chemical
entities such as atoms in molecules, atomic cores, bonds, or
lone pairs. The partition is achieved with the help of a
rigorous mathematical method, namely the Dynamical Sys-
tem Theory (see Abraham et al.),35,36 applied to the gradient
vector field of a quantum mechanically well defined local
function of the electron distribution which carries the
chemical information.

The choice of the local function is determined by the type
of description of the bonding. The one electron density F(r)
has its regular maxima at nuclei where the Coulombic
electron nucleus attractive potential tends to infinity. There-
fore, one nuclear attractor and one basin is associated to each
atom. As non-nuclear attractors are exceptions in molecular
system at equilibrium,37 the basins of the electron density
attractors are called atomic basins and constitute the back-
bone of the AIM theory of R. F. W. Bader.21 In order to
recover a description close to Lewis’s bonding picture, it is

necessary to consider another local function able to locate
the boundary between two regions where opposite spin pairs
are localized. This can be achieved by the Electron Localiza-
tion Function (ELF) which was originally designed by Becke
and Edgecombe to identify “localized electronic groups in
atomic and molecular systems”.38 It relies, through its kernel,
on the laplacian of the conditional same spin pair probability
scaled by the homogeneous electron gas kinetic energy:

�σ(r))
Dσ(r)

Dσ
0(r)

(1)

in which

Dσ(r)) τσ(r)- 1
4

(Fσ(r))2

Fσ(r)

appears to be the difference of the actual definite positive
kinetic energy τσ(r) and the von Weizsäcker kinetic energy
functional,39 whereas

Dσ
0(r)) 3

5
(6π2)2⁄3Fσ

5⁄3(r)

is the kinetic energy density of the homogeneous electron
gas. This formulation led Savin to propose an interpretation
of ELF in terms of the local excess kinetic energy because
the Pauli repulsion enabled its calculation from Kohn-Sham
orbitals.40-42 Orbital-based interpretations of ELF have been
proposed by Burdett43 and more recently by Nalewajski et
al.44 who considered the nonadditive interorbital Fisher
information. Another route pioneered by Dobson45 explicitly
considers the pair functions. It has been independently
developed by Kohout et al.46,47 and by one of us,48 allowing
the extension of ELF to correlated wave functions.49

The topological partition of the ELF gradient field23,50

yields basins of attractors which can be thought as cor-
responding to atomic cores, bonds, and lone pairs. The core
basins surround nuclei with atomic number Z > 2 and are
labeled C(A) where A is the atomic symbol of the element.
The valence basins are characterized by the number of atomic
valence shells to which they participate, or in other words
by the number of core basins with which they share a
boundary. This number is called the synaptic order.51 Thus,
there are monosynaptic, disynaptic, trisynaptic basins, and
so on. Monosynaptic basins, labeled V(A), correspond to the
lone pairs of the Lewis model, and polysynaptic basins to
the shared pairs of the Lewis model. In particular, disynaptic
basins, labeled V(A, X) correspond to two-center bonds,
trisynaptic basins, labeled V(A, X, Y) to three-center bonds,
and so on. The valence shell of a molecule is the union of
its valence basins. As hydrogen nuclei are located within
the valence shell, they are counted as a formal core in the
synaptic order because hydrogen atoms have a valence shell.
For example, the valence basin accounting for a C-H bond
is labeled V(C, H) and called protonated disynaptic. The
valence shell of an atom, for example A, in a molecule is
the union of the valence basins whose label lists contain the
element symbol A. This description recovers Lewis’s picture
of the bonding52,53 and provides very suggestive graphical
representations of molecular systems. A quantitative analysis

Topological Analysis J. Chem. Theory Comput., Vol. 5, No. 3, 2009 581



is further achieved by integrating the electron density and
the pair functions over the volume of the basins yielding
both basin populations:

Nj (ΩA))∫
ΩA

F(r)dr (2)

and the corresponding covariance matrix54 which measures
the quantum mechanical uncertainties of the electron distri-
bution and supports a phenomenological interpretation in
terms of weighted mesomeric structures.55

Combining the ELF and AIM approaches, Raub and
Jansen56 have introduced a bond polarity index defined as:

pXY )
Nj [V(X, Y)|X]-Nj [V(X, Y)|Y]

Nj [V(X, Y)|X]+Nj [V(X, Y)|Y]
(3)

where Nj [V(X, Y)|X] denotes the contribution of the X atom
to the population of the V(X, Y) basin, i.e., the integrated
density over the intersection of the V(X, Y) ELF basin and
the atomic basin of atom X.

In the context of the ELF analysis, the concept of domain
is very important because it enables definition of chemical
units within a system and to characterization of valence
domains belonging to a given chemical unit. The sole
gradient dynamical system mathematical properties do not
provide the whole set of definitions necessary to describe
the bonding in molecules, and therefore some other math-
ematically based approaches are required for this purpose.
The topological concept of domain has been introduced in
chemistry by P. Mezey in order to recognize functional
groups within organic molecules.57 Generalized to ELF
isovalues this concept has proved to be an efficient “genera-
tor” of clear definitions. Any subset of the molecular space
bounded by an external closed isosurface η(r) ) f is a
domain. A f-localization domain is such a subset with the
restriction that each point satisfies η(r) > f. A localization
domain surrounds at least one attractor; in this case it is called
irreducible. If it contains more than one attractor, it is
reducible. An irreducible domain is a subset of a basin
whereas a reducible one is the union of subsets of different
basins. Except for atoms and linear molecules, the irreducible
domains are always filled volumes whereas the reducible
ones can be either filled volumes or hollowed volumes.

Upon the increase of the value of η(r) defining the
bounding isosurface, a reducible domain split into several
domains each containing less attractors than the parent
domain. The reduction of localization occurs at turning points
which are critical points of index 1 located on the separatrix
of two basins involved in the parent domain. Ordering these
turning points (localization nodes) by increasing η(r) enables
tree-diagrams to be built reflecting the hierarchy of the basins.
Three types of domains can be distinguished according to
the nature of the attractors within them. A core domain
contains the core attractor(s) of a given atom, a valence
domain contains only valence attractors, and a composite
domain contains both valence and core attractors. For any
system there exists low values of η(r) ) f defining a unique
composite parent domain. The successive reductions of
localization will split this parent domain. Every child which
is a composite domain corresponds to one or more chemical

species. A chemical unit is the union of the basins of the
last appearing composite domain of a branch provided it is
a filled volume. This concept which has been successfully
used for hydrogen bonding58 enables characterization of
physisorption vs chemisorption. In the former case the first
reduction yields two composite domains corresponding to
the substrate and to the surface, respectively, whereas in the
latter case the parent domain splits into core domains
encompassed by a hollowed volume.

The case of adsorption is illustrated by Figure 1: the parent
domain corresponding to a low ELF value contains both the
substrate and the surface; when the isovalue defining the contour
is raised, it splits either into two filled domains (physisorption)
or becomes a hollowed volume encompassing the core domains
(chemisorption). In the same manner as for the hydrogen
bonding case where the ELF analysis is able to discriminate
weak, medium, and strong H-bonds, several situations may
occur for chemisorption according to the changes of the number
of basins and of the synaptic order of some of them during the
process. In a first case, very similar to physisorption, neither
the number of basins nor the synaptic order varies. The topology
of the substrate-surface system is just the addition of the
topologies of the moieties which preserve their own valence
shells, and the chemical interaction mostly consists of the
increase of the electron density fluctuation of adjacent basins
belonging to these valence shells, in other words an increase
of the delocalization. The number of basins may remain constant
whereas at least one synaptic order changes when one of the
fragments behaves as a Lewis acid, in this case a monosynaptic
basin (lone pair) of the other partner becomes disynaptic and
therefore forms a dative bond. In the last case, the covalent
chemisorption, the number of basins increases by the appearance
of disynaptic basins between the substrate and the surface.

2.2. The ELF Analysis of Large Systems. In our group,
the analysis of the ELF function is usually carried out with
the TopMoD software59 which has been initially designed
to treat rather small-sized systems. In the first step, the
program evaluates ELF over a three-dimensional regular grid
whose recommended step size is on the order of 0.1-0.2
bohr. Larger step sizes may seriously downgrade the reli-
ability of the results. In the second step, the program assigns
the grid points to the different basins: from each grid point
a trajectory is built until it leads to a region already assigned
to an attractor basin. This procedure is robust if the whole
set of attractors are located within the box. Because the
computational cost increases as the cube of the box dimen-
sion, the ELF analysis of large systems becomes rapidly
unfeasible. Moreover, the useful information provided by the
calculation represents a small amount of the output. In order
to overcome these difficulties we use a trick enabling us to
safely carry out the analysis on a subset of atoms. For a given
point, the contribution of the given localized basis function

Figure1. Bifurcationschemeofphysisorptionandchemisorption.
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to both ELF and F(r) dramatically depends upon the distance
between the origin of the basis function and the point.
Because of the exponential decay of the basis functions,
contributions arising from those typically centered farther
than 5 bohrs from the point are very small and thus can be
neglected. Therefore, the basis functions centered on atoms
which are not the nearest neighbors of those of the subset
of interest can be legitimately discarded, yielding an auxiliary
basis set to be actually used by the ELF analysis.

Figure 2 displays the localization domains and basin
population of the functional group of CH2ClCH2COOH. The
approximate calculation provides an almost identical aspect
of the domains in the region of interest; moreover, the error
on the populations is at most 0.02 e, the expected accuracy
of the integration, except for the V(C,C) basin which belongs
to the boundary zone.

2.3. Computational Methods. The ab initio calculations
of molecules have been performed at the hybrid Hartree-Fock
density functional B3LYP level60-63 with the Gaussian 03
software.64 The geometries and energetics of the adsorbed
species have been optimized in periodic slab calculations
carried out with the VASP plane waves periodic code.65,66

The slab size is given in Figure 3. For more details on the
slab model, the reader could refer to refs 9 and 11. The
different edge structures for the CoMoS and NiMoS catalysts

are reported in Figures 4 and 5. The energy values as used
later are defined as:

∆Eint )E(mol+ edge)-E(edgedef)-E(moldef) (4)

∆Edef(mol))E(moldef)-E(mol) (5)

∆Edef(edge))E(edgedef)-E(edge) (6)

∆Eads )E(mol+ edge)-E(edge)-E(mol)

)∆Eint +∆Edef(edge)+∆Edef(mol) (7)

where E(mol + edge) is the total energy of the molecule
adsorbed on the edge, E(edge) the energy of the free edge
(respectively, molecule for mol), and E(edgedef) the energy
of the edge (respectively molecule for mol) deformed when
the molecule is adsorbed on it. For adsorption energy
calculations on the periodic slab, the GGA-PW91 func-
tional67 has been used. The cutoff energy is 500 eV, while
the convergence criteria on forces is fixed at 0.05 eV/Å. For
a more detailed description on the conditions for the periodic
DFT calculations of 2,3-dimethylbut-1-ene and 2-methylth-
iophene adsorptions, the reader may also refer to ref 11

Figure 2. Localization domains and basin populations of the
acid functional group of CH2ClCH2COOH. Left: full calculation;
right: partial calculation. Color code: magenta ) core, red )
monosynaptic, blue ) protonated disynaptic, green )
disynaptic.

Figure 3. Example of the construction of a cluster (right)
starting from a periodic supercell (left).

Figure 4. η ) 0.7 Localization domains of the M edge
structures after geometry optimization for the two promoter
contents and the most stable sulfur coverage (yellow balls:
S; green balls: Mo; blue balls: Co; brown ball: Ni).

Figure 5. η ) 0.7 Localization domains of the S edge
structures after geometry optimization for the two promoter
contents and the most stable sulfur coverage (yellow balls:
S, green balls: Mo; blue balls: Co; brown ball: Ni).
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Representative clusters have been built from the periodic
geometries (see Figure 3) and the B3LYP calculations
performed with the standard 3-21G basis set.68-73 The
analysis of the ELF function has been carried out with the
TopMoD program developed in the Laboratoire de Chimie
Théorique de l’Université Pierre et Marie Curie.59 The
accuracy of the integrated densities is on the order of 0.02 e.
The ELF isosurfaces have been visualized with the Amira
3.0 software.74

3. Results and Discussion

The adsorption modes on M- and S-edges are governed by
the interactions between the metallic sites of the catalyst,
which play the role of electrophilic centers, with the
nucleophilic sites of the adsorbed molecules. Figures 4 and
5 display the ELF ) 0.7 localization domains of some of
the most important optimized M- and S-edges structures for
the Co(Ni)MoS system calculated by VASP. In the M-edge
the metal sites are above the average surface plane and
therefore easily accessible by any nucleophilic part of the
adsorbed molecule. However, at partial sulfur coverage the
sulfur atoms may play a repulsive role and therefore partially
hamper the chemisorption. On S-edges, the metal sites are
much less accessible and the adsorption will therefore be
much more difficult unless the shape of the nucleophilic
center of the ad-molecule fits the available voids between
sulfur atoms. Among other possibilities are the substitution
of a sulfur of the edge by a heteroatom of the molecule and
the displacement of sulfur atoms of the edge to create an
accessible metal site.

Three types of nucleophilic sites can be encountered with
respect to their dimensionality:

(1) polygonal sites correspond to electron delocalization
within an aromatic ring; the adsorbed molecule is expected
to lie in a plane parallel to the edge direction either on top
of a metal site or in a bridged position between two,

(2) bond sites correspond to the interaction of a multiple
bond with a metallic site; they are expected to be less subject
to geometrical constraint,

(3) substitution sites in which an atom of the ad-molecule
is involved in the coverage of the edge.

According to Pauling’s electronegativity scale75,76 Co
should have a greater electrophilic character than Ni and Mo
whereas in Allred and Rochow’s scale77 molydenum is the
less electronegative. However, an indication of the electro-
philic character of the metallic centers can be deduced from
the ELF and QTAIM population analysis carried out in the
present work. As a general rule, core basin populations are
rather stable: the averaged core population of Co, Ni, and
Mo are calculated to be 25.24 ( 0.05, 26.27 ( 0.06, and
39.72 ( 0.09, respectively, whereas larger standard devia-
tions are calculated for the AIM atomic populations. Ac-
cording to these values, the stronger interactions are expected
with molybdenum in agreement with Allred and Rochow’s
electronegativity.

Different types of bonding between the edge and the
molecules are expected. They are named ηi-MM′ for both
toluene (Figure 6) and 2-methylthiophene (Figure 7), where

i is the number of atoms supposed to be linked to the metallic
edge sites (M and M′ ) Mo, Co, Ni). The sulfur atom of
the thiophene molecule is always bonded to M. The
nomenclature used for 2,3-dimethybut-1-ene is given in
Figure 8.

3.1. Toluene Adsorption. It is first interesting to notice
that the sum of the deformation energies (molecule+edge)
is greater than 0.8 eV for the configurations strongly bound
to the edge (ηi-MM′ for i g 4), whereas it is only about
0.42 eV for the less attached η2-Co configuration. This is
due to the very low molecule deformation energy for this
last configuration compared to the others, while the deforma-
tion energy of the edge remains constant. Nevertheless, this
configuration is the less favorably adsorbed one, considering
interaction or adsorption energies.

The ELF localization domains of the free toluene molecule
and of three of its adsorption modes are displayed in Figure
9 whereas the population analysis is reported in Table 1.
The nucleophilic part of the toluene molecule is clearly
delocalized over the aromatic ring, and therefore one can
expect that the adsorption will take place preferentially on
the M-edge with the molecular plane parallel to the edge
direction. The “on top” adsorption over a Mo atom is
expected to yield a six-coordinated complex (η6) which could
be characterized by the presence of six disynaptic basins
between the metal and each carbon of the cycle. In fact there
are only two disynpatic V(Mo, C) basins in the adsorbed
species which involve the ipso and para carbons. The sum
of the integrated densities over these basins is 1.18 e. It
results from a density transfer from the Cipso-Cortho and
Cmeta-Cpara bonds which lowers the population of the related
disynaptic basins to ca. 2.3 e whereas the V(Cortho, Cmeta)
population is slightly increased by 0.2 e with respect to the
free molecule. Indeed, there is no destablizing loss of
aromaticity because the delocalization remains unchanged
for these latter bonds. However, the four other bonds are
substantially elongated and therefore the distance between
the metal and the ortho and meta carbon are slightly larger
than those involving the ipso and para ones which is
consistent with an effective η2 structure. These bond elonga-
tions may be due to a strong electron delocalization between
the Mo site and the toluene ring. In fact, the contribution of
the Mo to the V(C, C) basins (0.23 e) has been found to be
slightly larger than its contributions to the V(C, Mo) basins
(0.19 e).

In the η4 mode, two Co atoms are in bridging positions
below the Cortho-Cmeta and Cmeta-Cpara bonds located on the
same side with respect to the Cipso-Cpara direction. Four
V(Co, C) disynaptic basins are formed between the Co atoms

Figure 6. Views of toluene adsorption modes. (Black balls:
C; dark gray balls: edge site (Mo, Co, or Ni); light gray balls:
S).
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and the nearest carbons, and therefore the η4 bonding mode
can be unambiguously assigned to this adsorption mode. The
populations of the V(Co, C) basins range between 0.30 and
0.46 e and mostly come from all the C-C bonds of the cycle

except the Cipso-Cortho one which belong to the other half-
plane. The basin populations are almost independent of the
sulfur coverage, and the stability difference between the 0
and 12.5% edges should be due to the repulsion arising from
the sulfur lone pairs. Similar to this, the Co contribution to
the V(C, Co) and V(C,C) basins (0.33 e) is exactly the same
for both edges.

In the η2 mode, the Co atom is located below the
Cortho-Cmeta bond. The adsorption process yields disynaptic
basins between Co and Cortho and in the case of the 25%
sulfur coverage investigated here an interaction of the second
Cortho with two linked S atoms because the related V(S, S)
basin has a trisynaptic character. However, with respect to
the increase of the number of basins due to adsorption, this
structure should be named η1 rather than η2. Although the
V(Co, Cortho) population is low (0.36 e), the changes in the
V(C, C) population are rather large; for example, the V(Cortho,
Cmeta) basin loses 1.14 e with respect to the free molecule.
Nevertheless, Co contributes to this bond up to 0.02 e over
a total of 0.07 e. The calculated interaction energies are first
consistent with the Allred and Rochow electronegativity scale
and in second place with the number of disynaptic V(C, M)
basins.

3.2. 2,3-Dimethylbut-1-ene Adsorption. The detailed
results obtained on the adsorption modes and energies of

Figure 7. View of different modes of adsorption of 2-methylthiophene. (Black balls: C; dark gray balls: edge site (Mo, Co, or
Ni); light gray balls: S).

Figure 8. View of different modes of adsorption of 2,3-dimethylbut-ene. (Black balls: C; dark gray balls: edge site (Mo, Co, or
Ni)).

Figure 9. ELF ) 0.7 localization domains of toluene showing
the aromatic ring. ELF ) 0.75 localization domains of the η2,
η4, and η6 adsorption modes.
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2,3-dimethylbut-1-ene (as well as 2-methylthiophene) are
reported in ref 11. In what follows, we focus on the ELF
analysis and the deformation energy values derived from the
adsorption modes found in our previous study. The ELF
localization domains of the free 2,3-dimethylbut-1-ene
molecule and of three of its adsorption modes are displayed
in Figure 10 whereas the population analysis is reported in
Tables 2 and 3. The nucleophilic center is the terminal CdC

double bond, the approach of which toward a metallic site
is not hampered less by repulsions due to sulfur atoms than
to those due to the aromatic ring of toluene. Therefore
adsorptions on both M- and S-edges are thermodynamically
possible.

3.2.1. Adsorption on the M-Edge. The two adsorption
configurations on Mo sites (π-Mo and di-σ-MoMo) present
significant energetic differences with respect to Co and Ni
sites. Even if the molecule is strongly deformed (∆Edef (mol)
>+0.9 eV), the adsorption energies are the most exothermic
ones (∆Eads < -1.5 eV) because of highly exothermic
interaction energies (∆Eint < -2.5 eV).

Adsorption configurations on Co sites are all presenting a
sum of deformation energies lower or equal to +0.9 eV,
whereas on Ni, it is less than +0.4 eV. As a consequence,
even if adsorption energies on Co and Ni sites are in the
same range (between 0 and -0.8 eV), interaction energies
are always more exothermic on Co sites (between -0.98
and -1.41 eV) than on Ni sites (above -0.75 eV). In this
case, we observe an anticorrelation between the interaction
energies and the deformation energies of the molecules for
all configurations.

The geometries of the adsorption modes on the CoMoS
M-edge sites are all with the double bond “on top” of a metal
atom. At low sulfur coverage, 12.5%, there are two disynaptic
basins V(M, C(1)) and V(M, C(2)) linking the olefin to the
metal M. The population of these basins is on the order of
1.2 with Mo and of 0.5 with Co in agreement with the
respective electronegativities of these metals. The V(C(1),
C(2)) population decreases from 3.73 in the free molecule
to 2.50 in the adsorbed molecule. Such adsorption site should
be referred as η2 rather than as σ and π. At larger sulfur
coverage, the adsorbed molecule is linked to the surface by
only one disynaptic basin (η1 mode), the population of which
is always less than 0.8 e. The V(C(1), C(2)) population,
∼2.72 e, is slightly larger than that of the η2 mode.

On the NiMoS M-edge, the strongest adsorption occurs
for a Ni coverage of 50% without sulfur, the C(1) and C(2)
carbons are on top of two Mo atoms, and the olefin molecule
is linked to the surface by a disynaptic V(Mo, C(2)) and a
trisynaptic V(Mo, C(1), Mo′) basin both with populations
larger than 1 e (1.3 and 1.64, respectively). Accordingly,
the C(1)-C(2) bond loses its double bond character because
its population is lowered to 1.84 e. This density transfers
are expected to favor the hydrogenation of the olefin. When
the Ni coverage is increased to 100%, the larger electrone-
gativity of Ni hampers the formation of two basins and only
the V(Ni, C(1)) basin with a rather small population of 0.64 e
is observed. The C-Ni bond lengths are indeed larger (2.23
Å and 2.66 Å) than the C-Mo ones (from 2.12 Å to 2.37
Å). The population of V(C(1), C(2)), 2.70, is close to those
calculated for the adsorption in the CoMoS structures.
Finally, rather small sulfur coverage hampers the formation
of any disynaptic basin. Nevertheless, a stable complex can
be formed. Although this adsorption mode belongs to
physisorption, the surface and the ad-molecule share the same
valence shell because the ELF bifurcation value is 0.24. The

Table 1. Population Analysis, Deformation, Adsorption,
and Interaction Energies (eV) of Toluene Molecule
Adsorbed on M-Edge Sitesa

CoMoS M-edge: coverage (%M-%S)

adsorp mode free
50 (a)-12.5

η6-Mo
100-0

η4-CoCo
50 (p)-12.5

η4-CoCo
50 (p)-25

η2-Co

Nj [V(Mo, Cipso)] 0.53
Nj [V(Co, Cortho)] 0.30 0.33 0.36
Nj [V(Co, Cmeta)] 0.45 0.46

0.30 0.39
Nj [V(Co, Cpara)] 0.43 0.41
Nj [V(Mo, Cpara)] 0.65
Nj [V(S, S, Cortho)] 3.11
Nj [V(Cipso, Cortho)] 2.81 2.35 2.35 2.32 2.44

3.17 3.18 2.93
Nj [V(Cortho, Cmeta)] 2.82 3.01 2.45 2.47 1.87

2.33 2.27 2.49
Nj [V(Cmeta, Cpara)] 2.79 2.28 2.12 2.11 2.60

2.43 2.44 2.92
∑Nj [V(C, M)] 1.18 1.48 1.59 0.36
∑Nj [V(C, X)|M]b 0.42 0.33 0.33 0.07
∆Edef (mol) 0.20 0.45 0.49 0.06
∆Edef (edge) 0.53 0.41 0.34 0.36
∆Eads -1.73 -0.63 -0.65 0.00
∆Eint -2.46 -1.68 -1.48 -0.42

a Except for η6-Mo, the toluene molecule loses the Cs

symmetry. In the coverage entry, a means alternated, and p
means pairing (see Figure 4). b X ) C, M; M ) Mo, Co.

Figure 10. ELF ) 0.7 localization domains of 2,3-dimethylbut-
1-ene; ELF ) 0.80 localization domains of the di-σ-MoMo,
σ-CoCo (CoMoS S-edge), and tri-σ-Co adsorptions modes.
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population of the double bond is noticeably perturbed
because it is lowered by 0.17 e with respect to the free
molecule.

As a general rule for equivalent adsorption modes, the Co
and Ni contributions to the V(C, M) and V(C, C) basins have
very similar values independent of the V(C, M) populations
whereas the contribution of Mo is significantly larger.

3.2.2. Adsorption on the S-Edge. On this edge, we can
distinguish the sites of adsorption of the molecule by
comparing deformation energies: adsorption on pure Ni sites
leads to a sum of deformation energies lower to +0.3 eV
whereas it comprises between +1.1 and +1.7 eV on pure
Co sites and above +2.6 eV on sites with at least one Mo
atom. Hence, some resulting adsorption energies are endot-
hermic, even if all interaction energies are exothermic. It is

important to underline that the S-edge deformation energies
are generally higher than those of the M-edge, because of
the energy cost for the relaxation of S-atoms observed on
the S-edge.

The olefin is linked to the S-edge by two disynaptic basins
either when the sulfur coverage is less than 50% (CoMoS)
or if a Mo site is involved (NiMoS). The thermodynamically
favored adsorption, di-σ-NiMo, contains at the same time a
molybdenum site and a sulfur coverage less than 50%. The
double bond forms a bridge between the Ni and Mo sites;
therefore, the two disynaptic basins connect different metal
cores to different carbons, and their populations are 1.34 and
0.91 for V(Ni, C(1)) and V(Mo, C(2)), respectively. Con-
sequently, the population of the V(C(1), C(2)) basins is
lowered to a single bond value, i.e. 2.05 e. The two other

Table 2. Population Analysis, Deformation, Adsorption, and Interaction Energies (eV) of 2,3-Dimethylbut-1-ene Molecule
Adsorbed on M-Edge Sitesa

CoMoS M-edge: coverage (%M-%S)

adsorp mode free
50 (a)-25

σ-Co
50 (a)-12.5

π-Mo
50 (p)-25

σ-Co
50 (p)-12.5

π-Co
100-25

π-Co

Nj [V(Co, C(1))] 0.79 0.79 0.65 0.66
Nj [V(Mo, C(1))] 1.26
Nj [V(Co, C(2))] 0.36
Nj [V(Mo, C(2))] 1.20
Nj [V(C(1), C(2))] 3.73 2.72 2.50 2.71 2.50 2.73
∑Nj [V(C, M)] 0.79 2.46 0.79 1.01 0.66
∑Nj [V(C, X)|M]b 0.15 0.48 0.16 0.24 0.25
∆Edef (mol) 0.27 0.92 0.28 0.43 0.37
∆Edef (edge) 0.63 0.13 0.34 0.26 0.24
∆Eads -0.08 -1.54 -0.43 -0.72 -0.73
∆Eint -0.98 -2.59 -1.05 -1.41 -1.34

NiMoS M-edge: coverage (%M-%S)

adsorp mode
50 (p)-12.5

σ-Ni
50 (p)-0

di-σ-MoMo
100-0

σ-Ni

Nj [V(Ni, C(1))] 0.64
Nj [V(Mo, C(2))] 1.30
Nj [V(Mo, C(1), Mo′)] 1.64
Nj [V(C(1), C(2))] 3.56 1.84 2.70
∑Nj [V(C, M)] 0.00 2.94 0.64
∑Nj [V(C, X)|M]b 0.08 0.63 0.14
∆Edef (mol) 0.07 1.85 0.20
∆Edef (edge) 0.06 0.25 0.15
∆Eads -0.13 -1.94 -0.40
∆Eint -0.26 -4.04 -0.75

a In the coverage entry, a means alternated, and p means pairing (see Figure 4). b X ) C, M; M ) Mo, Co, Ni.

Table 3. Population Analysis, Deformation, Adsorption, and Interaction Energies (eV) of 2,3-Dimethylbut-1-ene Molecule
Adsorbed on S-Edge Sitesa

CoMoS S-edge: coverage (%M-%S) NiMoS S-edge: coverage (%M-%S)

adsorp mode 100-50 σ-CoCo 100-37.5 tri-σ-Co 50 (a)-50 π-Mo 50 (a)-37.5 di-σ-NiMo 100-37.5 σ-NiNi

Nj [V(Co, C(1))] 0.99 0.87
Nj [V(Mo, C(1))] 0.86
Nj [V(Ni, C(1))] 1.34 0.66
Nj [V(Co, C(2))] 0.71
Nj [V(Mo, C(2))] 0.69 0.91
Nj [V(C(1), C(2))] 2.78 2.50 2.44 2.05 2.96
∑Nj [V(C, M)] 0.99 1.58 1.55 2.25 0.66
∑Nj [V(C, X)|M]b 0.18 0.43 0.37 0.48 0.12
∆Edef (mol) 0.16 0.37 0.54 1.37 0.10
∆Edef (edge) 1.01 1.29 2.08 1.48 0.14
∆Eads 0.72 -0.51 0.81 0.16 -0.12
∆Eint -0.45 -2.18 -1.81 -2.69 -0.35

a In the coverage entry, a means alternated, and p means pairing (see Figure 5). b X ) C, M; M ) Mo, Co, Ni.
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adsorption modes involving two disynaptic basins, the so-
called tri-σ-Co and π-Mo, are electronically very similar:
on the one hand, the basin population V(M, C(1)) and V(M,
C(2)) are very close independent of the nature of the metal
(0.87 and 0.86 for V(M, C(1)), 0.71 and 0.69 for V(M, C(2));
on the other hand, the V(C(1), C(2)) population has almost
the same values as the other π modes on M-edge. The
difference of the interaction energies is consistent with the
metal contributions to the olefin basins.

The V(M, C(1)) populations, metal contributions to the
olefin basins, and interaction energies of the σ-MM modes
are in line with the electronegativities of Co and Ni.

3.3. 2-Methylthiophene Adsorption. Figure 11 displays
the localization domains of free and adsorbed 2-methylth-
iophene whereas the ELF population analysis is reported in
Tables 4, 5, and 6. The nucleophilic regions of 2-methylth-
iophene are, on the one hand, the heterocycle which has an
aromatic character and, on the other hand, the sulfur lone
pairs which can form a dative bond with the metallic sites.

3.3.1. Adsorption on the M-Edge. First, we observe that
the sum of deformation energies depends on the type of
mode, i.e. number of supposed interacting bonds between
the molecule and the edge: the deformation energies in-
creased with i in the ηi-mode. Consequently, a ranking is
observed for interaction energies: greater than -0.6 eV for
η1 modes, between -0.6 and -1.3 eV for η2 modes, around

-1.8 eV for η3 modes, and below -3.0 eV for η5 modes.
As for the olefin molecules, we observe an anticorrelation

Figure 11. ELF ) 0.8 localization domains of 2-methylthiophene; ELF ) 0.75 localization domains of the η2-CoMo, η3-MoCo,
η5-CoMo, η1-Ni, η2-NiNi, η5-MoMo, η1-CoCo η5-CoCo, and η5-NiMo adsorptions modes.

Table 4. Population Analysis, Deformation, Adsorption,
and Interaction Energies (eV) of 2-Methylthiophene
Molecule Adsorbed on CoMoS M-Edge Sitesa

CoMoS M-edge: coverage (%M-%S)

adsorp mode free
50 (a)-25
η2-CoMo

50 (a)-12.5
η5-CoMo

50 (p)-25
η3-MoCo

50 (p)-12.5
η3-CoCo

Nj [V(Co, S)] 2.07 2.05
Nj [V(Co′, S)] 2.26
Nj [V(Mo, S)] 1.98
Nj [V(Co, C(5))] 1.06 1.28
Nj [V(Co, C(4))] 0.52 0.66
Nj [V(Mo, C(5))] 1.10 0.93
Nj [V(Mo, C(4))] 0.45
Nj [V(Mo, C(3))] 0.28
Nj [V(Mo, C(2))] 1.08
Nj [V(S, C(5))] 1.29 1.21 1.20 1.23 1.16
Nj [V(S, C(2))] 1.31 1.42 1.24 1.30 1.31
Nj [V(C(4), C(5))] 3.82 2.58 2.37 2.34 2.36
Nj [V(C(3), C(4))] 2.21 2.38 2.46 2.14 2.09
Nj [V(C(2), C(3))] 3.91 3.44 2.53 3.70 3.73
∑Nj [V(C, M)] 1.10 2.74 1.58 1.94
∑Nj [V(Y, X)|M]b 0.21 0.53 0.34 0.47
∆Edef (mol) 0.22 0.54 0.40 0.42
∆Edef (edge) 0.49 0.47 0.43 0.27
∆Eads -0.54 -2.31 -0.90 -1.19
∆Eint -1.25 -3.32 -1.74 -1.88

a In the coverage entry, a means alternated, and p means
pairing (see Figure 4). b Y ) C, S; X ) C, S, M; M ) Mo, Co.
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between the interaction energy and the deformation energy
of the molecule. This trend explains why there is no direct
link between adsorption energies and the bonding mode.
Furthermore, deformation energies of the thiophene molecule
are in general smaller than those of the olefin.

At low sulfur coverage, both CoMoS and NiMoS edges
are able to adsorb 2-methylthiophene through an η5 mode
characterized by one V(M, S) basin and four V(Mo, C)
ones. The population of the V(Mo, C) basins are on the
order of 1 and 1.5 e for the CoMoS and NiMoS edges,
respectively, whereas the two other V(Mo, C) basins have
populations on the order of 0.5 e or less. Although the
population of the V(M, S) basin is larger on the CoMoS
than on the NiMoS edge, the interaction of the latter is
larger in absolute value, indicating that the adsorption is
controlled by the V(Mo, C) populations. An equalization
of the V(C, C) basin populations of the cycle with respect
to the free molecule is observed.

The η3 adsorption modes occur on the CoMoS edge. They
involve the sulfur and the C(4) and C(5) carbons. The
interaction between Co and the former carbon is weaker than
that between Co and the latter, the ratio of the populations
of V(Co, C(5)) and V(Co, C(4)) being on the order of 2.
The interaction being geometrically asymmetric with respect
to S, only V(C(4), C(5)) undergoes a significant variation
of its population.

The η2 modes are electronically very similar, although the
V(M, C(5)) population is larger for the CoMoS than for the
NiMoS because it involves a Mo site in the CoMoS rather
than a Ni site in the NiMoS. It is worth noting that the
V(C(2), C(3)) is more perturbed than for η3 modes.

The η1 modes of NiMoS clearly belong to physisorption,
as the bifurcation value of ELF is less than 0.2 for both.

3.3.2. Adsorption on the S-Edge. As for the M-edge, we
can distinguish the adsorption modes by the sum of their
deformation energies: for η1 modes it is less than 1.5 eV

whereas it is more than 2.0 eV for η5 modes. Consequently,
even if there is no direct link with adsorption energies,
interaction energies of η5 modes are always more exothermic
than for η1 modes (less than -2.5 eV vs more than -1.5
eV). Furthermore, for the 2-methylthiophene molecule as
well as for the olefin, it appears that the deformation energy
of the S-edge is always larger than that of the M-edge.

Two adsorption modes are possible on the S-edge: either
the highly coordinated η5 or the η1 in which the 2-meth-
ylthiophene structure substitutes a sulfur edge atom. The
bond properties of η5-CoCo are very similar to those of the
M-edge η5-CoMo. The η5-NiMo is in fact an η4 mode
involving a trisynaptic bridging V(Ni, S, Mo) basin. The
equalization of the V(C, C) basin trend is weaker than for
the true η5 mode.

In the η1 modes, the lone pairs of the sulfur atoms form
two dative bonds with two neighboring metallic sites, the
2-methylthiophene sulfur occupying a “substitution” site. The
populations within the heterocycle are very weakly perturbed
and the contribution of the metallic sites is always larger
than for the M-edge η1 mode. This contribution as well as
the interaction energy absolute value is larger for η1-CoCo
than for η1-NiNi and η1-MoNi. Similarly, the η1-CoCo S-Co
bonds (2.21 Å) are smaller than η1-NiNi and η1-MoNi S-Ni
(2.32 Å to 3.01 Å) and S-Mo bonds (2.58 Å).

3.4. Correlation between Metallic Site Contributions
and Interaction Energy. The calculation of the basin
population provides a basis for the understanding of the
electronic scheme during the adsorption of the three mol-
ecules (toluene, 2-methylthiophene, and 2,3-dimethylbut-1-
ene) on both edges. As a first insight, it appears clear that
even if the adsorption energy (defined according to eq 7) is
the most representative for the thermodynamic process, this
quantity cannot be correlated with any of the electronic
descriptors provided by the basin population analysis.
According to eq 7, the adsorption energy contains the
contribution of three distinct terms: the interaction energy,
and the deformation energies of the molecule and of the edge.
According to the values reported in Table 1-6 and described
in the previous section, it appears clear that the deformation
energies cannot be neglected and strongly depend on the
molecules, on the adsorption mode, and on the edge
considered. Hence, it is impossible to find a direct correlation
between ELF basin populations and the adsorption energy.
In contrast, it can be reasonably expected that the V(X, M)
basins shared between the atoms (X) of the adsorbed
molecule and the metallic sites of the catalyst (M) contribute
to the interaction energy. Therefore, a first descriptor,
∑Nj [V(X, M)], is built by summing the populations of the
V(X, M) basins. For toluene and 2,3-dimethylbut-1-ene, the
values of this index are reported in the ∑Nj [V(C, M)] entry
of Tables 1-3 whereas for dimethylthiophene the V(M, S)
populations have to be added to ∑Nj [V(C, M)]. The plot of
this sum as a function of the interaction energy (Figure 12)
enables us to distinguish the thiophene molecule from the
olefin and toluene molecules. The population of the V(S,
M) basin is indeed a strong contributor to the sum of the
population of the V(X, M) basins. This may qualitatively
explain why the methylthiophene molecule is more strongly

Table 5. Population Analysis, Deformation, Adsorption,
and Interaction Energies (eV) of 2-Methylthiophene
Molecule Adsorbed on NiMoS M-Edge Sitesa

NiMoS M-edge: coverage (%M-%S)

adsorp mode
50 (p)-12.5

η2-MoNi
50 (p)-12.5

η1-Ni
50 (p)-0
η5-MoMo

100-0
η2-NiNi

100-0
η1-Ni

Nj [V(Ni, S)] 1.95 1.98 1.86
Nj [V(Mo, S)] 1.97 1.74
Nj [V(Ni, C(5))] 0.87 0.85
Nj [V(Mo, C(5))] 1.66
Nj [V(Mo′, C(4))] 0.51
Nj [V(Mo′, C(3))] 0.49
Nj [V(Mo, C(2))] 1.44
Nj [V(S, C(5))] 1.31 1.31 1.13 1.30 1.32
Nj [V(S, C(2))] 1.35 1.32 1.10 1.37 1.32
Nj [V(C(4), C(5))] 2.62 3.66 1.96 2.62 3.62
Nj [V(C(2), C(3))] 3.53 3.75 2.33 3.52 3.71
Nj [V(C(3), C(4))] 2.31 2.31 2.55 2.32 2.32
∑Nj [V(C, M)] 0.87 0.0 4.10 0.85 0.00
∑Nj [V(Y, X)|M]b 0.22 0.08 0.70 0.24 0.11
∆Edef (mol) 0.13 0.00 1.29 0.09 0.02
∆Edef (edge) 0.27 0.05 0.26 0.19 0.11
∆Eads -0.26 -0.23 -2.90 -0.45 -0.41
∆Eint -0.66 -0.28 -4.45 -0.73 -0.54

a In the coverage entry, a means alternated, and p means
pairing (see Figure 4). b Y ) C, S; X ) C, S, M; M ) Mo, Ni.
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stabilized. In contrast, for the olefin and the toluene, the
unique contribution comes from the V(C, M) basins.
However, as also revealed by Figure 12, the sum of the
populations of V(X, M) basins cannot quantitatively unify
the trend in interaction energies for the three molecules. For
2-methylthiophene, the ELF populations are overestimated
because of the contribution of some nonbonding part in the
V(S, M) population. A unique electronic descriptor valid for
the whole sample of studied systems would be nevertheless
very useful. In Figure 13, it appears that such a descriptor
can be proposed if we consider the ∑Nj [V(X, Y)|M] quantity.
In this case, the value of the correlation coefficient, -0.96,
validates this descriptor as relevant for the interaction energy.

The ∑Nj [V(X, Y)|M] quantity (also reported in Tables 1-3)
is calculated by adding the metal AIM atomic basin
contributions to the V(C, M), V(C, S), V(C,C), and V(M,
S) populations. In other words, it is the integrated density
over the intersection of the V(C, M), V(C, S), V(C,C), and
V(M, S) basins and the atomic basin of the metal. Hence, it
clearly accounts for the electron density shared between the
catalyst and the adsorbed molecule. The sum of the metal
atomic basin contributions to the substrate ELF basins
accounts for the partial covalent character of the interaction
and, therefore, is found to be correlated with the electronic
interaction energies of the molecules with metallic sites. This
interesting correlation gives a rational explanation based on

Table 6. Population Analysis, Deformation, Adsorption, and Interaction Energies (eV) of 2-Methylthiophene Molecule
Adsorbed on S-Edge Sitesa

CoMoS S-edge: coverage (%M-%S) NiMoS S-edge: coverage (%M-%S)

adsorp mode
100-50
η1-CoCo

100-37.5
η5-CoCo

50 (a)-50
η1-MoNi

50 (a)-37.5
η5-NiMo

100-37.5
η1-NiNi

Nj [V(Co, S)] 2.28 2.26
Nj [V(Co′, S)] 2.62
Nj [V(Mo, S)] 2.15
Nj [V(Ni, S)] 2.52 2.33
Nj [V(Ni′, S)] 2.44
Nj [V(Ni, S, Mo)] 4.65
Nj [V(Co, C(5))] 0.96
Nj [V(Co, C(2))] 0.98
Nj [V(Co, C(4))] 0.47
Nj [V(Co, C(3))] 0.47
Nj [V(Mo, C(5))] 1.13
Nj [V(Mo, C(2))] 1.02
Nj [V(Mo, C(4))] 0.35
Nj [V(S, C(5))] 1.22 1.20 1.27 1.22 1.27
Nj [V(S, C(2))] 1.22 1.16 1.28 1.24 1.27
Nj [V(C(4), C(5))] 3.69 2.40 3.68 2.40 3.67
Nj [V(C(2), C(3))] 3.77 2.53 3.75 2.56 3.76
Nj [V(C(3), C(4))] 2.13 2.25 2.20 2.78 2.17
∑Nj [V(C, M)] 0.00 2.88 0.00 2.52 0.00
∑Nj [V(Y, X)|M]b 0.31 0.60 0.13 0.55 0.19
∆Edef (mol) 0.04 0.73 0.03 0.22 0.03
∆Edef (edge) 1.00 1.45 1.40 3.06 0.41
∆Eads -0.24 -1.37 0.35 0.41 -0.59
∆Eint -1.28 -3.55 -1.08 -2.87 -1.03

a In the coverage entry, a means alternated, and p means pairing (see Figure 5). b Y ) C, S; X ) C, S, M; M ) Mo, Co, Ni.

Figure 12. Sum of the populations ∑Nj [V(X, M)] vs interaction
energy. Green square: toluene; blue triangle: 2,3-dimethylbut-
1-ene adsorption; red lozenge: 2-methylthiophene adsorption.
(X ) S, C; M ) Mo, Co, Ni).

Figure 13. Sum of metal contributions ∑Nj [V(X,M) | M] vs
interaction energy. Green square: toluene; blue triangle: 2,3-
dimethylbut-1-ene adsorption; red lozenge: 2-methylthiophene
adsorption. (X ) S, C; M ) Mo, Co, Ni).
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the ELF analysis of the interaction energy term contributing
to the resulting adsorption energy. This evaluates the pure
contribution of the chemical bonding between the adsorbed
molecule and the metallic sites as also contained in the
interaction energy, when the other effects such as deforma-
tion energies of the edges and molecules are subtracted.

4. Conclusions

The conclusions which can be drawn from the present work
concern both technical and chemical aspects of computational
chemistry. From a methodological viewpoint, our results
demonstrate the feasibility of ELF analysis on rather large
systems related to surface chemistry. On the one hand, the
calculation of the ELF function and of the integrated densities
with a cluster model in which the atomic positions have been
optimized at a periodic level is a unique possibility until a
periodic code is available for plane waves. Fortunately, this
approach yields realistic results at least for the adsorbed
molecule subset. On the second hand, the computational
effort is significantly reduced by the atom selection procedure
which has the additional advantage of simplifying the
graphical representations.

The chemical pieces of information provided by the ELF
analysis mostly concern the nature of the interactions in terms
of bond formation between the catalyst and the adsorbed
molecule. In the case of physisorption, such as for the
2-methylthiophene η1 modes on the NiMoS M-edge, the
topology of the catalyst + substrate is just the sum of their
topologies. The chemisorption is characterized at least by
the increase of the synaptic order of a monosynaptic basin,
i.e. V(S) becomes V(S, M) in the 2-methylthiophene adsorp-
tion, or by the formation of new polysynaptic basins. The
number of disynaptic basins linking the substrate to the
metallic site may differ from that expected from a purely
geometrical coordination as is the case for the η6 adsorption
mode of toluene for which only two disynaptic basins
connect the ipso and para carbons to the molybdenum. The
ELF analysis should be therefore helpful to improve the
nomenclature used to name the adsorption modes, making
it more precise. A proposal of the form ηn (M), ηn′ (M′),...,
where the subscripts n, n′,..., indicate the number of bonds
made by the metallic sites M, M′,..., with the substrate
improves the implicit description of the bonding properties
of each site. In our opinion such nomenclature is less
confusing than that used initially in this paper. The same
π-Co name is used for two adsorption modes of the olefin
on the CoMoS edge, giving rise to one and two V(C, M)
basins; naming them η2 (Co) and η1 (Co) enables a better
differentiation.

The ELF analysis also sheds light, in a chemical language,
on the electronic rearrangements in the substrate, indicating
which bonds are activated. For example, our results show
that the 2-methylthiophene C–S bonds are weakened in the
η5 adsorption modes and more particularly in the η5-MoMo
one on the NiMoS M-edge which also corresponds to the
largest absolute value of the interaction energy.

Finally, we propose an exhaustive analysis of the different
energy components involved in the adsorption energy: the
interaction energy and the deformation energy of the

molecule and of the edge. In particular, because of non-
negligible deformation energies of the molecule and of the
edge, it can be better understood why the adsorption energy
cannot correlate with the ELF electronic descriptor. In
contrast, the interaction energy is the most representative of
the electronic exchange taking place between the substrate
and the adsorbate and thus exhibits a good correlation with
the ELF descriptor.
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function at the correlated level. J. Chem. Phys. 2006, 125,
024301.
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Abstract: The extension of molecular mechanics to reactive systems, metals, and covalently
bonded clusters with variable coordination numbers requires new functional forms beyond those
popular for organic chemistry and biomolecules. Here we present a new scheme for reactive
molecular mechanics, which is denoted as the valence–bond order model, for approximating
reactive potential energy surfaces in large molecules, clusters, nanoparticles, solids, and other
condensed-phase materials, especially those containing metals. The model is motivated by a
moment approximation to tight binding molecular orbital theory, and we test how well one can
approximate potential energy surfaces with a very simple functional form involving only interatomic
distances with no explicit dependence on bond angles or dihedral angles. For large systems
the computational requirements scale linearly with system size, and no diagonalizations or
iterations are required; thus the method is well suited to large-scale simulations. The method is
illustrated here by developing a force field for particles and solids composed of aluminum and
hydrogen. The parameters were optimized against both interaction energies and relative
interaction energies. The method performs well for pure aluminum clusters, nanoparticles, and
bulk lattices and reasonably well for pure hydrogen clusters; the mean unsigned error per atom
for the aluminum-hydrogen clusters is 0.1 eV/atom.

1. Introduction

The properties of molecules and materials result from
internuclear (atomic) dynamics governed, in the Born-
Oppenheimer approximation, by a potential energy surface
that results from the system’s electronic structure.1 In
principle, the electronic structure can be solved with high
accuracy, and great progress has been made in accomplishing

this for small molecules.2,3 There are two general approaches
for extending this progress to very large systems. The first
is to derive simpler, yet sufficiently accurate, electronic
structure methods. This includes theoretical advances in the
description of electronic structure,4-7 the development of
semiempirical quantum mechanical electronic structure meth-
ods with reasonably reliable parametrizations,8-13 and
improved algorithms,14-16 such as linear scaling methods.17-19

The second general approach is to obtain analytic ap-
proximations to potential energy surfaces. If this is done for
specific small systems,20-22 additional work is needed to
apply the treatment to extended systems. If this, however,
can be done in terms of general parameters that are
independent of the system size, then materials and large
systems can be modeled without additional apparatus.
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Examples of such an approach include recent potential
functions for a variety of materials,23-31 including Al
nanoparticles.30,31

Although traditional analytical potentials often have all
their parameters fit to experiment, a more modern approach
is to use high-level calculations. We note first that potentials
fit only to properties of bulk metals or bulk materials
containing metal atoms are unlikely to be accurate for defects,
surfaces, nanostructured materials, or nanoparticles, but
systematic data for these latter types of features or systems
are scarce. However, many energetic properties that are not
experimentally readily accessible can be calculated with
reasonable accuracy. Even when measured values are avail-
able, it is sometimes hard to say whether a given measured
value should be used in a fit, especially if the possible
experimental error is greater than the desired accuracy of
the computational method being parametrized. One recent
example involved the heats of formation of the oxides and
hydroxides of alkali and alkaline earth metals where widely
different experimental values were obtained.32 One main
obstacle, however, to using calculated rather than experi-
mental data is the difficulty in carrying out benchmark
electronic structure calculations on subsystems that are large
enough to represent the full complexity of the materials.

Analytic potentials are sometimes called classical poten-
tials because they can be evaluated without recourse to the
Schrödinger equation or other quantum formalisms. This is,
however, a deceptive name for potentials fit to quantum
mechanical electronic structure calculations.31 If the fit is
carefully done and the functional forms properly represent
the physics, these potentials can capture the full quantum
mechanical behavior of the potential energy surface within
the Born-Oppenheimer approximation.

Great progress has been made in developing general
parameters for analytic potentials for hydrocarbons, carbo-
hydrates, biopolymers, and diverse organic compounds,33-42

where this approach is traditionally termed molecular
mechanics. Most molecular mechanics force fields are
expressed in terms of local valence coordinates, specifically
stretches, bends, and torsions, plus interatomic distances of
nonbonded atoms. Since most molecular mechanics force
fields do not describe bond breaking or bond rearrangement,
they are restricted to nonreactive systems. Furthermore, they
are easiest to parametrize for systems where the geometries
are reasonably rigid and bonding types can be readily
classified and catalogued, whereas valences of metal atoms
are more variable, and bending and torsion parameters at
metal-atom centers seem to be less transferable because the
compounds are more flexible and bond lengths more variable
than in organic chemistry. Thus very little progress has been
made in extending this kind of force field to organometallic
and inorganometallic systems, although Landis and Deeth
and co-workers have attempted to incorporate some of this
complexity for modeling organometallic complexes,43,44 and
Goddard and co-workers have suggested that a central force
formalism, with local perturbations based on bond angles
and torsions, may provide a useful starting point for both
reactive and metal-containing systems, and they use this
approach in their ReaxFF reactive force field.25,27,29

The goal of the present work is to present a new type of
analytic function for modeling reactive and metal-containing
systems and to test it for nanoparticles composed of
aluminum and hydrogen. In recent years, we have been
interested in designing potentials that can be used to describe
and/or predict processes that occur in aluminum nanopar-
ticles.30,31,45 We developed two reasonably accurate poten-
tials,31 called NP-A and NP-B, for pure aluminum; NP-B is
less accurate than NP-A but is much less expensive to
evaluate and has been widely applied.46-51 However, neither
the NP-A nor the NP-B functional form is well suited for
straightforward extension to heteronuclear systems.

A potential capable of describing metal hydride materials
in both nanoparticles and the bulk would be of general
interest. Hydrogen is potentially an important component of
a clean energy storage medium, yet its transport, handling,
and utilization involve a number of safety and technical
problems. One possible strategy is to use metal hydrides as
a storage medium.52-63 Therefore, a potential energy function
capable of accurately describing such a system would be
useful.

In the present article we present a model called the
valence–bond order (VBO) model. It provides a physically
motivated starting point for representing the potential energy
surfaces of both homonuclear and heteronuclear metal-
containing and reactive systems. In Supporting Information
we also present an extension called VBO2 as an illustration
of an attempt to obtain better quantitative performance with
a functional form motivated by VBO but more general. We
illustrate VBO and VBO2 for particles composed of alumi-
num and hydrogen and for bulk aluminum, but the approach
used here is also applicable to other metal hydride systems
and to other materials and nanoparticles, although for some
such more general applications it may be necessary to extend
the functional form, for example, to include explicit Coulomb
interactions, attractive noncovalent interactions, more com-
plicated bond order terms, explicit bond angle or screening
(three-body) terms, and so forth. Before considering such
extensions, it is useful to learn how well the simple VBO
form without such enhancements can represent potential
energy functions, and the present paper provides a first
answer to that question.

Section 2 presents the new formalism, section 3 presents
the parametrization, and section 4 gives the results and
characterizes the accuracy achievable with the method.
Section 5 gives further discussion, especially of the relation-
ship to other approaches.

2. Theory

2.1. Background. The key physical idea underlying the
present approach is that the quantum mechanical nature of
bonding manifests itself in the concepts of valence, bonding
orbitals, and steric repulsion, all of which have a quantum
mechanical basis ultimately rooted in the Pauli principle.
These concepts are utilized, for example, in the valence-
shell electron-pair repulsion (VSEPR) model64,65 and the
molecular orbital aufbau principle.65,66 The most straight-
forward way to incorporate the effects of bonding orbitals
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is to obtain the molecular orbitals by some variational or
semiempirical method, which invariably involves diagonal-
izing a Hamiltonian matrix (such as a matrix representing a
Fock or Kohn-Sham operator or some other effective one-
electron Hamiltonian). Alternatively the quantum mechanical
bonding effects can be included by valence bond theory,1,65-71

which involves the diagonalization of a configuration interac-
tion matrix. The difficulty in developing analytical potentials
that do not require diagonalizations or an iterative process
that is essentially equivalent to a diagonalization is in
representing the saturation of bonding power (valence) of a
given atom. Conventional molecular mechanics effectively
accomplishes this by adopting a single-configuration valence
bond formalism, where a different set of molecular mechanics
parameters is associated with each bonding pattern, which
in turn is associated with each valence bond configuration.
This works well for nonreactive organic chemistry but
requires a multiconfigurational extension72,73 for reactions
and is hard to extend to metals. Our approach presented here
is different and is motivated instead by the second moment
approximation to tight binding theory.

Tight-binding theory9-11,13,74,75 may be justified76-79 as
an approximation to density functional theory, especially by
using the noniterative formulation of Harris and Foulkes.77-80

Tight-binding theory has been developed to simulate materi-
als systems directly,9-11,13,17,18,45,81-86 but it can also be
further approximated to motivate analytic potentials. In
particular, the closely related functional forms of the qua-
siatom theory,87 the Gupta potential,88 the embedded-atom
model (EAM),89 the modified EAM (MEAM),90 the second-
nearest-neighbor EAM (2NN-EAM),91 the Finnis-Sinclair
scheme,92 the effective medium theory,93 and the bond order
potential94 can all be motivated by the second moment
approximation to tight binding theory.95-105 These methods
are closely related to each other, and they are also closely
related to the Tersoff potential106 and hence to the Brenner23

and ReaxFF25,27-29 potentials.107 The relationship of EAM
to the Pauling bond order has also been discussed.108

In the EAM and other closely related methods that we
have mentioned, the energy is the sum of an attractive term
that may be considered to approximate the cohesive band
energy of tight-binding theory and a repulsive term repre-
senting mainly core-core repulsion. The cohesive term is
proportional to the square root of the second moment of the
density of states (�M), which may be approximated for each
atom as the square root of a sum of two-body transfer
integrals or the square root of the local coordination number.
This idea is the basis for the functional form proposed here.
In the basic version of the theory, to be called VBO (see
below), unlike some earlier models, we retain only the
simplest possible functional form, without added complica-
tions such as bond-angle terms and Coulombic terms.
However, we generalize the square rooot, �M, to allow any
fractional root, Mφ, where the fraction φ is positive and less
than unity. This is motivated by a recognition that the value
of one-half for φ is just one example of a more general
principle of valence saturation, by which we mean that the
bonding power of an atom for an additional ligand decreases
as the number of ligands already bound increases. Other ways

to motivate a value of φ other than one-half would be to
consider the fourth root of the fourth moment (rather than
the square root of the second moment) or to note that whereas
the solution of a two-configuration bonding model, such
as the London equation,109 expresses valence saturation
through a square root, a three-configuration model could
involve a third root in the lowest eigenvalue.

In Supporting Information we present a second version,
called VBO2, in which we include two cohesive terms for
the homonuclear case and a third cohesive term for the
heteronuclear case; we include explicit 3-body dependence
for the heteronuclear case but still do not include explicit
dependence on bond angles or coulomb forces. The VBO2
formulation involves two fractional powers rather than one;
this may be justified either empirically (it sometimes gives
more accurate results for a given number of parameters)
orsmore satisfactorilysby a two-band model.110

2.2. VBO. The new method presented here is called VBO.
The first key element in the functional form is the bond order
between atoms i and j, which is represented by a monotoni-
cally decreasing function of the distance rij between atoms
i and j. A variety of such functions may be (and were)
considered, but in the present work we present results only
for the following cutoff decaying exponential function

bij ) { Nij exp [ -γij

1- (rij ⁄ ∆ij)
0.5] if rij < ∆ij

0 if rijg∆ij

(1)

where γij and ∆ij are parameters that depend on the atomic
numbers of i and j. Notice that ∆ij also plays the role of a
cutoff value: as rij goes to ∆ij from the left, bij goes to zero
with an infinite number of continuous derivatives. Nij is a
normalization constant defined as

Nij ) exp [ γij

1- (Rij,0/∆ij)
0.5] (2)

where Rij,0 is the nominal bond distance of the ij dimer; the
bond order of the dimer at this distance is defined to be unity.
The factor Nij and the constant Rij,0 are included only for
convenience of interpretation, and no energies depend on
how the bond order is normalized because a different
normalization would simply yield different optimized coef-
ficients in expressions like eq 6.

The energy of the system is the sum of individual atomic
contributions

E)∑
i

Ei (3)

The form for Ei was inspired by the Morse potential111

where the energy of a diatomic molecule is approximated
as

Eij )Dij{Xij
2(rij)- 2Xij(rij)} (4)

where Dij is a constant and

Xij ) exp [-Rij(rij -Rij,0)] (5)

and Rij is another constant. Note that Xij can be interpreted
as the Pauling bond order.112 In the VBO model, we replace
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Xij by bij, and we generalize eq 4 to a many-body system as
follows

Ei )∑
j*i

(ci,1bij,1 + ci,2bij,2)-Vi
ni (6)

where the valence Vi of atom i is defined by

Vi )∑
j*i

(ci,3bij,3 + ci,4bij,4) (7)

and bij has now become bij,p. Four different bij,p functions
with p ) 1, 2, 3, 4, each with its own γij,p parameters, were
used; ci,p (with p ) 1, 2, 3, 4) and ni are atomic parameters,
whereas γij,p (with p ) 1, 2, 3, 4) are parameters that depend
on the atomic numbers of atoms i and j. All these parameters
are positive by definition. Note that if ci,2 ) 0, ci,4 ) 0, and
ni ) 0.5, then this functional has the same spirit as that used
in the embedded atom108 method but with a bond order
function rather than an embedded density; furthermore, if
one considers a diatomic molecule, uses eq 5 instead of eq
1 for the bond order, and sets ci,2 ) 0, ci,4 ) 0, ci,3 ) (2ci,1)2,
and ni ) 0.5, one obtains a Morse111 function. In eq 6, the
last term is called the valence energy; this term is purely
attractive, and the repulsive term is pairwise additive. The
key physical constraint on the parameters of the VBO model
is that ni should be less than unity to account for valence
saturation. But a key feature of the new method is that we
will not constrain it to be exactly one-half, as in EAM.

The extension of the VBO model to a heteronuclear system
such as a mixed aluminum-hydrogen system is more
complicated than the way Hall combined two Morse
potentials in order to map the potential energy surface for a
collinear reaction.113 Equation 4 is a quadratic function, and
the simplest multinomial extension of such functions is to
include cross-terms113

EABC )DAB(XAB
2 - 2XAB)+DBC(XBC

2 - 2XBC)+ 2HXABXBC

(8)

where H is a fitting parameter. But this cannot be applied to
VBO because it does not show valence saturation in the same
way. Therefore, we generalize VBO by replacing eq 7 by a
more general valence expression, in particular

Vi )∑
j*i

(ci,3σij,3bij,3 + ci,4σij,4bij,4) (9)

In general the parameters depend on the atomic numbers
of atoms i and j. When i and j have the same atomic numbers,
we set σij,3 ) σij,4 ) 1 so that eq 9 reduces to eq 7 for
homonuclear systems. In heteronuclear systems, σij,p * σji,p

if atoms i and j have different atomic numbers. The new
parameters σij,p with i * j allow the contribution of an Al
atom to the valence of H to be different from the contribution
of an H atom to the valence of Al. Similarly, γij,p * γji,p for
p ) 3 or 4. However, the parameters γij,p for p ) 1 or 2 are
assumed invariant to permuting the order of the indices
because these terms are pairwise additive. Equations 3, 6,
and 9 define the VBO model.

2.3. Zero of Energy. The zero of energy is taken as the
sum of the energies of the individual atoms at infinite
separation. Thus all energies are interaction energies.

3. Determination of the Parameters

3.1. The Data Set. Three data sets, consisting of energies
for specific geometries, were used: one each for pure
aluminum, pure hydrogen, and mixed aluminum-hydrogen
clusters.

For pure aluminum (Aln clusters and nanoparticles), the
data set, consisting of 808 structures calculated at either the
PBE0114/6-311+G(3d2f)115,116 (for n e 13) or PBE0114/
MEC117 (for n > 13) level, was taken from previous work.31

The PBE0 functional was chosen based on comparison to
high-level correlated wave function calculations on small
clusters.118 Data for bulk face-centered cubic (fcc), hexagonal
close-packed (hcp), and body-centered cubic (bcc) quasi-
spherical clusters data sets were also included, and they also
were taken from previous work.31

For pure hydrogen, part of the data set was also taken
from the literature: 80 H2 points from the accurate calcula-
tions by Kołos and Wolniewicz,119 602 H3 points (307 C2V,
22 D∞h, 21 D3h, and 252 C∞V) determined using the BKMP2
H3 potential energy surface of Boothroyd et al.,120 and 586
H4 points (279 for parallel approach of two H2 molecule,
307 for perpendicular approach of two H2 molecules)
determined using the BMKP H4 potential energy surface of
Boothroyd et al.121

In addition to these data for H2, H3, and H4, we generated
new data for H6 and H8 by performing high-level ab initio
calculations at selected geometries. Because H atoms do not
form extended systems, except for condensed-phase H2, in
contrast to aluminum atoms, which can form nanoparticle
and bulk aluminum phases, pure hydrogen clusters with more
than 8 atoms are not considered here.

Two types of H6 structures were included in the data set.
To construct the first type, the saddle point of the H + H2

reaction was optimized at the UHF122/cc-pVTZ123 level of
theory, and two identical collinear H3 fragments in this
geometry were used to form an H6 fragment, with the second
H3 fragment pointing toward the central atom of the first H3

fragment. The six H6 geometries included in the data set have
closest distances between the two H3 fragments varying
between 0.7 and 1.2 Å. The second type of H6 structure was
constructed starting with a configuration analogous to that
of the CH5

+ cation, which on optimization leads to a structure
of the type H4 + H2. In the six structures included in the
data set, the distance between the H4 and H2 fragments was
varied between 0.82 and 1.23 Å.

The H8 data set is also composed of two types of
structures. The first type has two square H4 fragments situated
side-by-side, where the H-H distances in the H4 fragments
were previously optimized. Then, six points were generated
by varying the distance between the H4 fragments from 0.46
and 0.80 Å. The second type of H8 structure derives from
an ethane-like configuration for the hydrogen atoms. The
optimized structure has a long H-H central distance with
each of the two H atoms involved being attached to three H
atoms. Six points were added to the data set with the central
distance ranging from 1.25 to 1.97 Å.

The electronic energies of the H6 and H8 structures were
obtained from extrapolated multireference configuration
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interaction124 (MRCI) calculations with a quadruples cor-
rection125 (+Q). First, full-CI (FCI) calculations were
performed for H6 and H8 with a double-� basis set with two
goals: (1) to determine whether the singlet, triplet, or quintet
is the lowest-energy spin state for the given structure, and
(2) to establish a benchmark on which to base the choice
for the reference space in the MRCI calculations. In this way,
it was determined that the H6 and H8 structures have triplet
and singlet ground states, respectively. To determine the
complete active space self-consistent field126,127 (CASSCF)
reference state in the MRCI calculations, the H3 and H4

energies were calculated at the FCI level. Complete active
spaces of 3 electrons in 6 orbitals, denoted (3,6), and 4
electrons in 6 orbitals, denoted (4,6), were chosen as the
MRCI reference spaces for H3 and H4, respectively, and
provided a maximum error of about 0.1 kcal/mol with respect
to the FCI results. Thus, (6,12) and (8,12) reference spaces
were chosen for the H6 and H8 calculations.

The final electronic energies for the H6 and H8 structures
were obtained using the following form128 of basis-set
extrapolation

E∞
tot ) 3R

3R- 2RE3
CASSCF - 2R

3R- 2RE2
CASSCF +

3�

3� - 2�
E3

(MRCI+Q)-CASSCF - 2�

3� - 2�
E2

(MRCI+Q)-CASSCF (10)

where E2 and E3 are energies obtained using the cc-pVDZ
and cc-pVTZ basis sets, respectively, and MRCI+Q denotes
multireference CI with singles and doubles and Pople’s
correction for quadruples; the parameters R and � were taken
to have the values128 3.4 and 2.4, respectively.

The pure hydrogen data set for H2, H3, and H4 consists of
1268 data, and adding the H6 and H8 data increases this to
1292 data; the resulting data set is called the H1292 database.
The data set of mixed aluminum-hydrogen particles consists
of 906 AlnHm geometries (n ) 1-13, m ) 1-12) and
energies calculated at the PBE0/6-311++G(3d2f,2p) level
of theory and is called the AlH906 database.

We also considered bulk data for pure aluminum. The
accurate cohesive energies for fcc, bcc, and hcp lattices with
given lattice constants were estimated in ref 31, and those
data are also used here. To calculate bulk cohesive energies
for a given lattice constant from the model potentials, we
used the procedure of ref 31 where the bulk cohesive energy
is defined as the energy per atom required to atomize a
particle, extrapolated to an infinitely large particle from finite-
size fcc, bcc, and hcp quasispherical particles with given
nearest-neighbor distances corresponding to the lattice
constants for which accurate data are available.

All geometries and energies used in fitting are provided
in Supporting Information.

3.2. The Optimization of Parameters. A microgenetic
algorithm129 was used to fit the parameters. In particular,
we used the FORTRAN version 1.7a of Carroll’s code,130

locally modified with our own fitness function and designed
to run in parallel using the message-passing interface
(MPI).131,132

The fitness function used here is based on the fitness
functions used in previous work31,45 to parametrize analytical

functions and tight-binding models. In each case, the data
sets are divided into subgroups (with nk particles in subgroup
k) according to the size of the particles, i.e., the number of
atoms Ni in each particle i and their stoichiometry. Thus,
for example, although Al4H and AlH4 clusters both have Ni

) 5; they are in different subgroups, but, as previously,31

some subgroups for pure aluminum contain more than one
Ni. Note that we use “particle” as a generic name for either
a “cluster” (which is arbitrarily defined to have less than 20
Al atoms) or a “nanoparticle” (which is correspondingly
defined to have 20 or more Al atoms).

For pure Al, there are 11 groups with Ni ) 2 in group k
) 1, Ni ) 3 in group k ) 2, up to Ni ) 89-177 in group k
) 11.31 The sum of the nk for pure Al is 808. For hydrogen
particles, there are five subgroups, each with a single value
(2, 3, 4, 6, or 8) of Ni. For heteronuclear particles each

Table 1. VBO Parameters for Pure Al and Pure H

parameter (units) Al H

γij,1 0.3599 2.7292
γij,2 4.2538 8.8100
γij,3 0.5684 16.1462
γij,4 2.9562 16.1330
ci,1 (eV) 0.2248 2.0112
ci,2 (eV) 0.2172 0.8084
ci,3 (Eh

1/ni)a 0.0133 0.00001
ci,4 (Eh

1/ni)a 0.0068 0.00001
ni 0.7931 0.1536
Rij,0 (Å) 2.7306b 0.7414b

a Eh denotes one hartree, that is, one atomic unit of energy.
b As explained in the text, this is not a fitting parameter; it simply
gives the bond order a convenient (“physical”) normalization.

Table 2. VBO Parameters for Al-H Interactions

parameter Al-H parameter Al-H

γHAl,1 7.4891 σHAl,4 0.0191
γHAl,2 1.8993 σAlH,3 2.9306
γHAl,3 13.5669 σAlH,4 0.00008
γHAl,4 13.6902 cHAl,1 (eV) 0.3509
γAlH,3 1.6911 cHAl,2 (eV) 0.5174
γAlH,4 2.8674 Rij,0

a (Å) 1.6637
σHAl,3 0.00001

a As explained in the text, this is not a fitting parameter; it
simply gives the bond order a physical normalzation.

Table 3. Mean Unsigned Errors (in eV/atom) for Aluminum

method (model) εbulk εCE εpart εcluster
a εnano

b

VBO 0.02 0.002 0.05 0.06 0.03
NP-Ac 0.02 0.002 0.05 0.06 0.03
NP-Bc 0.03 0.002 0.06 0.08 0.04

a MUE for cluster with 2-19 atoms. b MUE for nanoparticles
with 20-177 atoms. c Reference 31.

Table 4. Bulk Lattice Constants (LC, in Ångstroms) and
Bulk Cohesive Energies (Ec in eV/atom) for Aluminum

fcc bcc hcp

method (model) LC Ec LC Ec LC Ec

accuratea 4.02 3.43 3.24 3.33 2.87 3.39
VBO 4.02 3.44 3.22 3.25 2.85 3.49
NP-Aa 4.01 3.43 3.22 3.34 2.84 3.42
NP-Ba 4.03 3.43 3.27 3.35 2.86 3.41

a Reference 31.
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subgroup k has a unique combination of Ni and stoichiometry.
Thus for pure hydrogen and heteronuclear systems, we
introduce the notation Nk for the Ni value of subgroup k.

We consider errors on a per-atom basis so that errors in
the larger clusters do not dominate our considerations simply
because of the size of the larger clusters. (The per-atom
convention is standard in discussing cohesive energy of bulk
materials.) We define a mean unsigned error (MUE) per atom
for subgroup k as

εk )
1
2(∑i)1

nk

wi∆Ei
k

∑
i)1

nk

wi

+
∑
i)1

nk-1

∑
j)i+1

nk

wiwjδNiNj
∆∆Eij

k

∑
i)1

nk-1

∑
j)i+1

nk

wiwjδNiNj

) (11)

where wi is the weight of particle i, and δNiNj
is a Kronecker

delta. For pure aluminum, the form of wi is the same as eq 1 of
ref 31. For pure hydrogen and mixed aluminum-hydrogen
particles, wi ) 1. In eq 11, the quantity ∆Ei

k is the difference
between the accurate (acc) and the VBO energies (each relative
to separated atoms) for structure i of subgroup k

∆Ei
k ) (Ei

k,acc -Ei
k,VBO)/Ni (12)

and ∆∆Eij
k is defined by

∆∆Eij
k ) (∆Ei

k -∆Ej
k)/Ni (13)

Thus ∆Ei
k is a measure of the error in absolute interatomic

interaction energy on a per atom basis for a given geometry,
whereas ∆∆Eij

k is a measure, again on a per atom basis, of
the accuracy of relative binding energies, that is, of the shape
of the potential energy surface. The importance of including
∆∆Eij

k was demonstrated previously.13,30

For pure Al we computed a mean unsigned error for all
particles by

εpart ) (∑
k)1

Ns

εk)/Ns (14)

where Ns is the number of subgroups (11 for pure Al). For
pure Al, we also compute εcluster in which eq 14 is applied
only to the six subgroups with Ni e 19 and εnano in which
eq 14 is applied only to the five subgroups with Ni g 20.
For hydrogen we used eq 14 with Ns ) 3 (see below). For
mixed aluminum-hydrogen particles, we used

εpart )
∑

k

nk
RNk

�εNk

∑
k

nk
RNk

�
(15)

with R ) 0.4 and � ) 0.6.
Since a genetic algorithm is used to maximize a function,

but our goal is to minimize the total error ε, the fitness
function f is defined as

f )-ε (16)

where ε is the error to be minimized. For hydrogen and
heteronuclear hydrogen-aluminum particles, we set ε equal
to εpart. For pure aluminum, we used31

ε) 1
4

(εbulk + εCE)+ 1
2

εpart (17)

where εbulk and εCE are, respectively, the errors in the bulk
energies and in the FCC cohesive energies. In eq 17, εbulk is
the average unsigned error over 12 energetic data for fcc,
bcc, and hcp as in ref 31 (we considered four lattice constants
for each crystal habit), whereas εCE is for the subset of four
data four fcc.

3.3. Parameterization. In eq 1, the parameter ∆ij acts as
a cutoff distance for the bond order. In previous work31 on
pure Al, we used a similar cutoff, with values of 6.50 Å for
our best potential, called NP-A, and 5.38 Å for a second
potential, called NP-B, that was slightly less accurate but
much more economical. The calculation times for large
particles increase with increasing ∆ij and the onset of linear
scaling is pushed up to larger nanoparticles. Therefore, in
all further work, ∆ij was frozen somewhat arbitrarily at 6.88
Å for Al-Al and Al-H interactions and at 5.29 Å for H-H
interactions.

A more commonly used approximation for the bond order
is Pauling’s approximation,112 which is a simple exponential
function as in eq 5. We found that replacing bij with a simple
exponential did not significantly improve the results, and so
we retained the cutoff bond order of eq 1 for the present
parametrization.

There are nine free parameters in the VBO model for pure
aluminum and nine for pure hydrogen. We first optimized
the parameters for pure Al and pure H. VBO did not yield
satisfactory results for H6 and H8, so we excluded them from
the final optimization. The final values of the VBO param-
eters and Rij,0 for Al-Al and H-H interactions are listed in
Table 1. The optimized values of ni are less than one; this
physically corresponds to valence saturation as the bond order
increases.

When optimizing the heteronuclear parameters, we froze
the Al-Al and H-H parameters at the values already found
for the pure systems. The number of heteronuclear parameters
for Al-H systems is 12 in VBO. In the initial stages of
optimization all parameters were optimized, and the impor-
tance of various parameters was examined. No terms were
dropped, and the final heteronuclear parameters are given
in Table 2.

4. Results

For pure aluminum, the mean unsigned errors for VBO are
given in Table 3. Table 3 shows that for aluminum particles
VBO performs as well as the much more expensive NP-A,
which contains two three-body terms, and better than the
less expensive embedded-atom-based NP-B, which includes

Table 5. MUEs (eV/atom) for Pure Hydrogena

K 1 2 3 εpart

formula H2 H3 H4

Nk 2 3 4
nk 80 602 586
VBO 0.02 0.06 0.14 0.07

a In Tables 5 and 6, the last row gives the MUE per atom for
the nk data subgroup k, where subgroup k contains particles with
Nk atoms, except in the last column where the last row gives εpart.
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three-body effects through the use of an embedding function
rather than by explicit three-body terms. Figure 1 shows four
cuts through the potential surfaces for various sizes of clusters
(these plots are similar to plots in previous papers13,118 on
Al clusters; the geometries used for these cuts are specified
qualitatively in words in the figure captions and precisely
by tables of geometries and energies in Supporting Informa-
tion). The figure shows that VBO not only gives small mean
unsigned errors, it also reproduces the shapes of the potential
energy curves.

Table 4 shows that VBO also reproduces the bulk
aluminum cohesive energy and lattice constants semiquan-
titatively.

Mean unsigned errors for pure hydrogen are given in Table
5. The average error for hydrogen is 0.07 eV/atom for VBO,
which is the same order of magnitude as for aluminum, but
a little larger.

MUEs for heteronuclear aluminum-hydrogen particles are
given in Table 6. The number nk of particles in each subgroup
is also included in the table. The maximum MUE per atom is
0.35 eV, which is the MUE for the AlH12 cluster. The minimum
MUE per atom is 0.03 eV/atom for the Al13H cluster. Most of
the MUEs are in the range of 0.03-0.16 eV/atom. The overall
error is 0.11 eV/atom, which is about twice as large as εcluster

for pure Al. Figure 2 shows four cuts through the potential

energy surfaces for mixed aluminum-hydrogen clusters (the
geometries used in these cuts are specified qualitatively in words
in the figure captions and precisely by tables of geometries and
energies in Supporting Information); as for pure aluminum we
see that the VBO model represents the qualitative dependence
of the energy on structure quite well. The local maximum in
Figure 2d corresponds to the passage of H through a triangular
face between the exterior of the cluster and an interstitial site;
VBO does quite well for reproducing this potential energy curve.

5. Discussion

Methods for calculating potential energy functions may be
divided into those in which electrons are treated explicitly, for
example, coupled cluster theory,2,3 density functional theory,4,5

or semiempirical molecular orbital theory8-13 (including tight
binding theory9-11,13), or those in which electrons are only
implicit; a generic name for the latter is molecular mecha-
nics.33-42,133 As mentioned in the introduction, the molecular
mechanics method usually yields analytic potential functions
with general parameters designed to be transferable between
systems (as opposed, for example, to potentials designed for a
specific system, such as the water dimer21 or the reaction of H
with CH4

22). The set of general parameters is sometimes called

Figure 1. Potential energies of aluminum clusters as calculated by the VBO method (solid curves) as compared to PBE0/6-
311+G(3d2f) reference data (crosses): (a) Al2 dimer, (b) Al3 for the sideways approach of Al to the dimer with a dimer bond
length of 2.8635 Å, (c) Al4 for the planar, short-bridge approach of Al to Al3 (for this plot, Al3 is an acute isosceles triangle with
the short bond being the base of length 2.54724 Å and the height being 2.20598 Å, and the fourth Al approaches the short bond
along the C2 axis), and (d) Al7 for the approach of Al to a 3-fold face of a regular octahedron with bond length 2.6634 Å. In all
plots, r is the distance between the approaching Al atom and the closest Al atom in the approached subcluster.

Table 6. MUEs (eV/atom) for Heteronuclear Particles Composed of Aluminum and Hydrogen

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 εpart

formula AlH AlH2 AlH3 AlH4 AlH5 AlH6 AlH12 Al2H Al2H2 Al3H Al4H Al13H Al13H2 Al13H8 Al13H12
Nk 2 3 4 5 6 7 13 3 4 4 5 14 15 21 25
nk 37 108 54 3 3 3 3 304 3 74 180 125 3 3 3
VBO 0.05 0.14 0.33 0.05 0.10 0.30 0.35 0.06 0.16 0.08 0.11 0.03 0.05 0.06 0.08 0.11
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a force field,37-42 although literally that term should refer to
the gradient field of the potential energy function for a specific
system.

As mentioned in the introduction, many molecular mechanics
force fields (conventional molecular mechanics) are designed
for treating only nonreactive systems or reactive systems for
geometries in the neighborhoods of equilibrium geometr-
ies,33-42,133 although there are some notable exceptions such
as the Tersoff potential for systems composed of Si and C or
Ge,106 the Brenner potentials for hydrocarbons,23 the Streitz-
Mintmire potential for systems composed of Al and O,24 and
the ReaxFF force fields for a variety of materials, including
hydrocarbons25 and materials composed of Si and O,27 Al and
O,28 or Mg and H.29 These exceptions maybe called reactive
molecular mechanics. VBO is designed as a form of reactive
molecular mechanics, and in this article we presented a general
parametrization for systems composed of Al and H.

A key difference between the reactive molecular mechanics
force fields23-29,107 and the conventional nonreactive ones33-42,133

is the absence of typing in reactive force fields. In conventional
molecular mechanics one specifies the type and bonding
arrangement for each atom, e.g., an O might be typed as sp3,
and the user of the force field specifies the two atoms to which
it is bonded. In reactive force fields, an atom interacts with all
other atoms, except possibly for a smooth cutoff based solely
on distance, and the parameters are the same for every Al, or
every O, or every H independent of any perceived bonding
pattern in a given geometry. Furthermore, the bonding interac-
tions yield physically correct results when bonds break, as in a
Morse potential,111 as contrasted to harmonic or other polyno-
mial interactions often used in conventional molecular mechanics.

For ionic or charged systems or systems whose bonds have
large partial ionic character, one should include explicit

Coulomb interactions in the functional form.2,4,25,27-29,34,36-42

Al and H have different electronegativity values, but the
difference corresponds to only about 10% partial ionic
character112a (as compared to about 20% for Mg-H and 30%
for Al-O). Therefore, at least for now, we omitted explicit
Coulombic terms. Another key issue is whether to include
explicit angle-dependent terms.23,25,27,29,33,4,106,134 Similarly to
deciding not to include Coulombic terms, at least for the present,
we attempted here to see how well the VBO form can work
without angle-dependent terms.

These choices led us to a very simple functional form, much
simpler than any of those mentioned above, and the present
results are encouraging in that this simple functional form
already provides a qualitatively correct description of aluminum-
hydrogen clusters with a wide range of compositions (wide
range of Al-to-H ratios in the clusters). This kind of analytic
potential energy function is therefore well suited to the largest
simulations, such as long-time simulations of the dynamics of
large nanoparticles, ceramics, or polycrystalline materials.135,136

A second possible use for low-cost potential energy functions
with general parameters is as a starting point for a more accurate
potential energy function for a specific system or reaction; for
example, sometimes one starts with a general parametrization
and then introduces specific reaction parameters.137-140 For a
more specific example, one might reoptimize the general
parameters for diffusion of a single hydrogen atom in bulk Al
or to treat a system of two hydrogen atoms interacting with
Al13 or with a specific crystal face of solid Al. By focusing on
a less diverse set of structures, one can obtain a much more
accurate potential energy surface.

One goal of the present work has been to test the accuracy
attainable within a VBO scheme without explicit dependence
on bond angles. The primitive VBO scheme employs one

Figure 2. Potential energies of aluminum-hydrogen mixed clusters calculated by the VBO method (solid curves) as compared
to PBE0/6-311++G (3d2f,2p) reference data (crosses): (a) AlH dimer, (b) Al2H for the sideways approach of H to the Al2 dimer
with an Al-Al bond distance of 2.73 Å, (c) Al3H for the 3-fold approach of H to an Al3 triangle (for this plot, Al3 is an equilateral
triangle with the a bond length equal to 2.50696 Å, and the H approaches its center along the C3 axis), and (d) approach of H
to Al13 cluster (FCC structure) toward a 3-fold site but with C1 symmetry. In all plots, r is the distance between the approaching
H atom and an Al atom in the approached subcluster.

VBO Potentials for Nanoparticles J. Chem. Theory Comput., Vol. 5, No. 3, 2009 601



valence per atom and involves only radial two-body forces.
The VBO2 scheme presented in Supporting Information
involves two or three valences per atom and includes two-
body homonuclear and heteronuclear radial forces and three-
body heteronuclear forces; the latter implicitly bring in bond
angle dependences. Directions for further study include three-
body homonuclear forces, four-body forces, explicit depen-
dence on bond angles or dihedral angles, and explicit
accounting for Coulomb and dispersion interactions.

6. Conclusion

The VBO method has been proposed and developed for
modeling a metal hydride system. The VBO model should
be applicable to many other pure and binary materials as
well, and there is no reason why it cannot be extended to
ternary or other multicomponent systems. Here the model
was used to develop a force field for nanoparticles composed
of aluminum and hydrogen. The overall error is just 0.11
eV/atom on average for heteronuclear systems and 0.05-0.07
eV/atom for homonuclear systems. In Supporting Information
we illustrate how the VBO functional form can be used as
a starting point for functional forms with more parameters
and flexibility. In particular, we present an extension called
VBO2 and show that it is more accurate for pure hydrogen
clusters and slightly more accurate for mixed aluminum-
hydrogen clusters.

The computational expense of VBO scales linearly with
system size, and diagonalization or iterations are not required;
the method is therefore particularly useful for simulating
large systems.
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Abstract: An extended self-consistent charge density-functional tight-binding (SCC-DFTB)
parametrization for Zn-X (X ) H, C, N, O, S, and Zn) interactions has been derived. The
performance of this new parametrization has been validated by calculating the structural and
energetic properties of zinc solid phases such as bulk Zn, ZnO, and ZnS; ZnO surfaces and
nanostructures; adsorption of small species (H, CO2, and NH3) on ZnO surfaces; and zinc-
containing complexes mimicking the biological environment. Our results show that the derived
parameters are universal and fully transferable, describing all the above-mentioned systems
with accuracies comparable to those of first-principles DFT results.

1. Introduction

Zinc is the second most abundant transition metal in living
organisms, playing an important role in many biological
processes as a part of metalloenzymes or complexes with
amino acids, nucleic acids, or proteins. Additionally, zinc
oxide (ZnO) is a promising material for applications in
electronics and optoelectronics, since it is a wide band gap
semiconductor and has large excitonic binding energy.
Recently, ZnO has been synthesized in a variety of nano-
structures, including nanowires,1-3 nanobelts,4-6 nanorods,7,8

and nanopilars,9,10 which opens up the possibility for novel
applications. Furthermore, the covalent attachment of func-
tional organic linkers to ZnO surfaces can be used in
biosensing applications.11

Zinc-containing systems have been widely investigated by
first-principles methods.12,13 Although such methods repre-
sent the state-of-the-art approach in materials science and
solid-state simulations, they become prohibitive at treating
a large number of atoms because of their high computational
demands. In this context, one of the most promising
approaches is the self-consistent charge density-functional
tight-binding14,15 (SCC-DFTB) method, which has been
successfully applied to large-scale quantum-mechanical
simulations in solid-state physics, chemistry, materials sci-

ence, and biophysics.16,17 The method is an approximation
to the Kohn-Sham density-functional theory (DFT),18 which
combines reasonable accuracy and computational efficiency.
However, the limited set of available parameters is still a
drawback, and in some cases the transferability of parameters
between solid and molecular environments is still a problem.
For example, a recent SCC-DFTB parametrization for Zn
has been successfully applied to investigate zinc-containing
biological molecules,19 but this set has been unable to model
solid-phase zinc systems with acceptable accuracy.

It becomes evident that a new SCC-DFTB parametrization
for zinc interactions, able to describe both solid-state and
biological systems, would open up new possibilities for
investigating Zn-containing materials. Further, it would
reinforce the confidence in the transferability of SCC-DFTB
parameters among different environments.

In this work, we present our recently derived SCC-DFTB
parametrization for representing zinc and its interactions with
hydrogen, carbon, nitrogen, oxygen, and sulfur. The param-
etrization has been validated by comparing SCC-DFTB
results with literature data for solid-state zinc-containing
systems (metallic Zn, ZnO in the wurzite (w), and ZnS in
the zinc-blend (zb) structures), ZnO surfaces and nanostruc-
tures, adsorption of small species (H, CO2, and NH3) on ZnO,
and models for zinc biological complexes. Our results have
been found quantitatively comparable to those obtained by
DFT calculations, demonstrating that the derived parameters
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are reliable in predicting geometries and energetics of both
solid and molecular systems, being fully transferable among
different chemical environments.

2. Computational Methodology

2.1. SCC-DFTB Method. Since the foundations of the
DFTB approach are described elsewhere14,15 and have been
also the subject of a recent review,20 only a short description
of the method will be given here.

The SCC-DFTB total energy expression (eq 1) is a second-
order expansion of the DFT Kohn-Sham total energy with
respect to charge density fluctuations (δn):

Etot
DFTB )∑

i

occ

ni〈Ψi|Ĥ0|Ψi〉 +
1
2∑R�

N

γR�∆qR∆q� +Erep )

E0[n0]+E2[n0, δn]+Erep (1)

In this expression, the zero-order term E0 is the energy
summation over all occupied eigenstates Ψi. The ap-
proximated non-SCC Hamiltonian (Ĥ0) is derived within the
two-center approximation for an arbitrary reference charge
density (n0), introduced as the superposition of individual
atomic charge densities. This Hamiltonian is also subjected
to the frozen-core approximation (i.e., only the valence
electrons are considered explicitly and the inner electrons
are represented by an effective (pseudo) potential). The
second term E2 corresponds to the second-order expansion
of the exchange-correlation functional with respect to the
charge density fluctuations δn (the first-order terms in this
expansion vanish for any arbitrary n0), approximated as
atomic pointlike charges (∆q). Finally, the third term Erep

accounts for the “double-counting” terms and the ion-ion
core interactions in a set of distance-dependent pairwise
repulsive potentials, modeled as the difference between the
SCC-DFTB electronic energy (EElec

DFTB ) E0 + E2) and the
total DFT energy for some reasonably chosen reference
system:

Erep )∑
R,�

UR�(RR�) (2)

where

UR�(RR�))ETotal
DFT (RR�)-EElec

DFTB(RR�)

with RR� representing the distance between the atoms R and
�.

The wave functions (Ψi) are expanded as a linear
combination of atomic orbitals:

Ψi )∑
µ

cµφµ (3)

In the common DFTB framework, the atomic orbitals (φ) in
eq 3 are constructed as linear combinations of Slater-type
orbitals, obtained by solving self-consistently the modified
Kohn-Sham equation (eq 4) for the spin-unpolarized free
atom:

[T̂+w0 + ( r
r0

)2]φµ(r)) εµφµ(r) (4)

The modified Hamiltonian in eq 4 consists of a kinetic energy
operator T̂, the potential energy for the neutral atom w0, and
an additional harmonic potential (r/r0)2 used to enforce the
localization of the atomic orbitals and to improve the quality
of energy band structures (see ref 20 for details).

Having defined the atomic orbitals (φ) and an initial set
of expansion coefficients (cµ), we estimated the atomic charge
fluctuations (∆q) via Mulliken population analysis, and the
DFTB total energy problem is solved self-consistently by
using the secular eq 5

∑
i

ciµ(Hµν - εiSµν)) 0 ∀ µ, i (5)

with

Hµν )Hµν
0 + 1

2
Sµν∑

�

N

(γR� + γ��)∆q�

Hµν
0 ) 〈φµ|Ĥ|φν〉 ∀ µ ∈ R, ν ∈ �

Sµν ) 〈φR|φν〉

In eq 5, the diagonal zero-order matrix elements Hµν
0 are

taken as the eigenvalues obtained from the free-atom
calculations, while the distance-dependent nondiagonal ele-
ments Hµν

0 and Sµν are calculated within the two-center
approximation and tabulated for all future calculations. This
procedure avoids integral evaluations during the DFTB
calculation, leading to a computational efficiency comparable
to those of traditional semiempirical methods while retaining
the accuracy comparable to those of DFT methods. The
charge transfers among different atoms take into account their
respective chemical hardnesses (Hubbard parameters), cal-
culated as the first derivative of the total atomic energy with
respect to the electronic occupation around the neutral-atom
electronic density.

2.2. Parametrization Details. The parameters necessary
to represent a system within the DFTB method include the
Hubbard parameters for every chemical element, the Hµν

0 and
Sµν matrix elements, and the repulsive pairwise potentials
for all interacting neighbors. Fortunately, all of these
parameters are controlled by a few main quantities to be
determined in the parametrization process, namely: (i) the
reference input density (n0), (ii) the wave function confine-
ment radius (r0), and (iii) the repulsive cutoffs, determining
the distances where the repulsive pairwise potentials (Erep)
vanish.

As the parametrization reported here extends a previous
well-established one,21 all parameters not involving zinc
atoms are assumed to be the same as in ref 19, including n0

and r0 for the H, C, N, O, and S atoms. For zinc, n0 was
confined into a 2.69 Å radius while r0 was chosen to be 1.59
Å, because these values provided a good compromise among
the description of geometries, cohesive properties, and
electronic band structures for hexagonal closed-packed (hcp)-
Zn and w-ZnO structures. The reference systems and cutoffs
used to model the Zn-X (X ) H, C, N, O, S, and Zn)
pairwise repulsive potentials are summarized in Table 1.

The electronic DFTB parameters (i.e., Hubbard parameters,
Hµν

0 and Sµν matrix elements) were derived directly from DFT
calculations, performed within the generalized gradient
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approximation (GGA) and using the Perdew, Burke, and
Ernzerhof (PBE)22 exchange-correlation functional. All
parameters derived here are available for use by the scientific
community and can be downloaded from http://www.dftb.
org/parameters/ (search for the set named “znorg-0-1”).

2.3. Reference DFT Calculations. In the DFT reference
calculations to derive the Zn-X repulsive potentials (UR�),
we employed the GGA/PBE functional (for X ) H, C, O,
and Zn), as implemented in the SIESTA package23 using a
double-� plus polarization function (DZP) basis set and
norm-conservative Troullier-Martins pseudo-potentials24

(PP) for representing the valence and inner electrons,
respectively. The Becke three-parameter, Lee, Yang, and Parr
(B3LYP) hybrid functional25,26 in conjunction with the
6-311G+(d, p) basis set, as implemented in the Gaussian03
package,27 was used for X ) N, S.

All GGA/PBE calculations were performed with periodic
boundary conditions (PBC). For the fcc-Zn and zb-ZnO
solid-state reference systems, the k-points were sampled with
a (8 × 8 × 8) Monkhorst-Pack28 (MP) grid. For molecular
reference systems, the calculations were performed by
employing large supercells, including a 25 Å vacuum region
in all directions to isolate the molecules from their periodic
replicas.

2.4. SCC-DFTB Calculations. The SCC-DFTB calcula-
tions were performed with the DFTB+ code.29 Solid-state
hcp-Zn, w-ZnO, and zb-ZnS properties were calculated using
PBC and converged (8 × 8 × 4), (8 × 8 × 4), and (8 × 8
× 8) MP k-points, respectively. The calculations for ZnO
surfaces (clean and with small adsorbates) were performed
using suitably oriented supercells and PBC within the slab
approach.39 A vacuum region of 25 Å along the surface-
normal direction and a (4 × 4 × 1) MP grid for the k-point
sampling were employed. The [0001] ZnO nanostructures
had their growth direction oriented along the z-axis in the
supercell, with vacuum regions of 25 Å along the x and y
directions, and were calculated using a (1 × 1 × 4) MP
grid for k-point sampling. To mimic the zinc environment
in biomolecules, we performed geometry optimizations of
small zinc-containing complexes, as suggested by Elstner et
al.19 In all SCC-DFTB calculations, the atomic positions were
relaxed until the forces in the system became smaller than
0.001 eV/Å.

3. Results and Discussion

3.1. Bulk Systems. The bulk hcp-Zn, w-ZnO, and zb-
ZnS lattice parameters and elastic properties were determined
by calculating energy-volume profiles in a (15% range
around the experimental equilibrium volumes and fitting the
results to the Murnaghan equation of state. For hcp-Zn and
w-ZnO structures, we fixed the experimental c/a ratios
(1.63030 and 1.602,31 respectively).

As shown in Table 2, the DFTB parameters for all
considered bulk systems are in fairly good agreement with
DFT and experimental ones. The deviations in the cohesive
energies are not surprising, since DFTB calculations usually
overestimate this property,38 while the error in the Zn bulk
modulus is a consequence of strong zinc wave function
compression applied to this element (∼1.3 times larger than
the Zn covalent radius), which shortens its dissociation bond
distances and lowers its electronic energy wells. Nevertheless,
this strong wave function compression ensures reasonable
band structures for the solid materials, as exemplified in
Figure 1 for the case of w-ZnO.

It should be mentioned that, because of the small basis
set employed, the energy band structures calculated with
DFTB are not in the same way affected by the band gap
problem, as observed in local density approximation (LDA)
and GGA calculations. Therefore, with no additional cor-
rection scheme being applied, the ZnO band gap obtained
via DFTB (∼4.1 eV) is closer to the experimental value
(∼3.3 eV) than the GGA-PBE result (∼0.9 eV). It may be
taken as an advantage to study electronic states introduced
by defects or adsorbed species; however, it must be noted
that the dispersions in the edge of the conduction band are
considerably smaller than those found in GGA-PBE results
and may lead to deviations in calculating transport properties.

Concerning the hcp-Zn and w-ZnO cohesive energies, the
overestimation in principle could be corrected by applying

Table 1. Parametrization Details of the Pairwise Repulsive
Potentials for Zn-X Interactions (X ) H, C, N, O, S, and
Zn)a

equilibrium Zn-X distance (Å)

interaction
reference
system

repulsive
cutoff (Å) SCC-DFTB DFT

Zn-H ZnH2 1.63 1.63 1.54
Zn-C Zn(CH3)2 2.01 1.97 1.95
Zn-N Zn(NH3)2 2.10 1.92 1.95
Zn-O zb-ZnO 2.23 2.00 1.98
Zn-S Zn(SH)2 2.40 2.21 2.17
Zn-Zn fcc-Zn 2.75 2.79 2.74

a fcc ) face-centered cubic.

Table 2. Selected hcp-Zn and w-ZnO Bulk Properties
Calculated with SCC-DFTB and DFT Methods and
Obtained from Experimentsh

Ecoh

(eV) a (Å) c (Å) V (Å3) B0 (GPa) B0′

hcp-Zn
SCC-DFTBa 2.45 2.71 5.04 32.20 114 5.67
PP-DZP/PBEa 1.92 2.68 5.00 31.24 73 5.93
PP-PW/PW91b 2.65 5.10 31.02 60 6.59
expt 1.36c 2.61b 4.91b 28.96b 60-80b 5.2-6.4b

w-ZnO
SCC-DFTBa 9.77 3.28 5.25 50.04 161 2.49
PP-DZP/PBEa 8.08 3.30 5.34 51.08 124 4.55
PP-PW/PBEd 8.98 3.34 5.30 51.40 171
expte 7.52 3.25 5.20 47.62 208 4

zb-ZnS
SCC-DFTBa 7.93 5.43 160.1 44.2 2.4
PP-PW/LDAf 7.22 5.35 153.3 82 4.6
PP-PW/PW91g 5.60 175.6 66.7 3.95
exptf 6.33 5.40 157.5 76.9 4.9

a GGA/PBE calculation performed with the SIESTA package;
this work. b GGA/PW91 (Perdew-Wang 1991 exchange-cor-
relation functional) calculation in ref 32. c Reference 33.
d GGA/PBE calculation in ref 34. e Reference 35. f LDA calculation
in ref 36. g GGA/PW91 (Perdew-Wang 1991 exchange-correlation
functional) calculation in ref 37. h PW ) plane-wave basis set.
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longer repulsive potentials, slightly sacrificing the geo-
metrical parameters. However, we verified that this procedure
leads to wrong relaxations for ZnO surfaces and nanostruc-
tures, where the outermost atoms move toward the vacuum
region to avoid the artificially enhanced repulsion.

3.2. ZnO Surfaces. ZnO surfaces form a good probe set
to test the new parameters, since they have the bulk
symmetry broken along one direction. Additionally, they
have been subject to several DFT studies in the literature.39,40

The (101_0), (12_10), (0001/0001_), and depolarized dep-(0001)
surfaces were constructed starting from the equilibrium
DFTB w-ZnO structure. The surface unit cells for these four
structures are represented in Figure 2. In all cases, our results
for the surface relaxations are in good agreement with those
reported in ref 40, as shown in Table 3.

The relaxations in the (101_0) terminated slabs (Figure 3A)
are only significant in the three outermost surface layers.
The oxygen atoms remain close to their bulk positions, while
the zinc atoms move inward in the top layer and slightly
outward in the second layers. In comparison with the bulk
values, the bond lengths between the top and the second
layer, dZn-O, are ∼6% shortened while the bonds between
the second and the third layers are ∼3% larger. The
O-Zn-O angle (R) changes from its 109° bulk value to
117° at the top surface layer, remaining unchanged in the
inner layers. The (12_10)-terminated slabs follow similar
trends, with relaxations observed especially over the outer-
most Zn atoms, leading to a ZnO bond length ∼4% shorter
and strongly distorted bond angles at the surface.

The depolarized (0001) surface relaxation, as shown in
Figure 4B, agrees well not only with the theoretical prediction
derived by Claeyssens et al.,40 but also with recent experi-
mental data confirming the existence of such structure in ZnO
ultrathin films.41 This is a graphite-like structure, where both
O and Zn atoms assume a planar sp2 configuration, with all

in-plane bonds by ∼3% smaller than those in the w-ZnO,
and with large interlayer distances (∼2.34 Å). In this case,
the relaxations do not differ significantly among different
layers into the slab and are also not influenced by the slab

Figure 1. Electronic band structures for w-ZnO calculated
with SCC-DFTB (top) and DFT (PP-DPZ/PBE) (bottom)
methods. The DFT band structure was calculated using the
SIESTA package. ε denotes the Fermi level for each case.

Figure 2. Top and side views of surface unit cells for (101_0)
(A), (12_10) (B), and (0001/0001_) (C) surfaces. The dep-(0001)
surface unit cell is similar to that used for its polar counterpart,
but with planar ZnO sheets perpendicular to the [0001]
direction.

Table 3. Comparison of Geometrical Relaxations in ZnO
Surfaces Calculated with DFTB, for Selected Structural
Parameters As Specified in Figures 3 and 4, with DFT
(PP-PW/PW91) Results in Ref 40

surface layers inner layers

surface parameter
SCC-
DFTB

PP-PW/
PW91

SCC-
DFTB

PP-PW/
PW91

ZnO(101_0)
dZn-O (Å) 1.88 1.85 2.01 1.99
d′Zn-O (Å) 2.05 2.06 2.01 1.99
R (deg) 117 117 109
� (deg) 108 109

ZnO(12_10)
dZn-O (Å) 1.93 1.87 2.01 1.99
dO-Zn (Å) 2.00 1.96 2.01 1.99
d′Zn-O (Å) 2.05 2.06 2.01
R (deg) 118 117 109
� (deg) 97 109

ZnO(0001/0001_)
dZn-O (Å) 1.94 1.92 1.99 1.97
d′Zn-O (Å) 2.08 2.15 2.05 2.08
R (deg) 111 113 109
� (deg) 120 120 90

ZnO (dep-0001)
dZn-O (Å) 1.90 1.93 1.90
d′Zn-O (Å) 2.34 2.4 2.34
R (deg) 120 120 120
� (deg) 90 90
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thickness. For the polar (0001/0001_) surface, where the
structure resembles the w-ZnO (Figure 4A) one, the relax-
ations extend through the whole slab and are more sensitive
to variations in its thickness. Further, we also observed small
charge transfers from the oxygen-terminated to the zinc-
terminated surface (∼0.3e per slab unit cell), which have
usually been considered as a stabilizing mechanism for such
surfaces.42,43

Since the polar (0001) and (0001_) surfaces are not
equivalent, it is not possible to calculate their absolute
formation energies. Therefore, we calculated the cleavage
energy (the energy required to create two surfaces by
cleaving the perfect crystal) for all calculated slabs to verify
their relative stability as a function of the film thickness
(Figure 5). The results are in excellent agreement with the
DFT predictions in ref 40. As expected, the slabs with the
polar surfaces are less stable than those (101_0)- and (12_10)-

terminated. However, the (0001) depolarized structure is the
most stable for the thinnest films, in accordance with the
one experimentally found for ultrathin ZnO films,41 but
quickly rising in energy with increasing the slab thickness.
It is necessary to remark that the phase transitions from the
depolarized (0001) film to other configurations (in this study,
at 5-, 6-, and 16-layer-thick slabs, respectively) take place
at points slightly different from those found by Claeyssens
et al. (namely, 9, 10, and 18 layers), but this does not affect
the general conclusions drawn here.

3.3. ZnO Nanostructures. To extend the validation
procedure to ZnO nanostructures, we investigated (101_0)-
faceted hexagonal nanowires with different diameters (3.7,
9.9, 16.5, and 23.0 Å, respectively). Figure 6 shows the
relaxed cross section of one of the investigated nanowires
and its band structure calculated with both DFT and DFTB.
For all nanowires, the relaxations at the outermost layers
follow the same general trends observed for the (101_0)
surfaces, being also in very good agreement with previous
DFT results.42 The inner atoms remain close to their positions
in the bulk ZnO, as the O atoms at the surface, whereas the
zinc atoms at the surface move inward, shrinking the distance

Figure 3. Side and top views of the first three bilayers of
relaxed (101_0) (A) and (12_10) (B) ZnO surfaces calculated
with SCC-DFTB.

Figure 4. Side and top views of (A) the relaxed (0001/0001_)
and (B) dep-(0001) ZnO surfaces calculated with SCC-DFTB.

Figure 5. SCC-DFTB cleavage energy for (101_0), (12_10),
(0001/0001_), and dep(0001) ZnO surfaces as a function of
the slab thickness.

Figure 6. (A) DFT (PP-DPZ/PBE) and (B) SCC-DFTB
electronic band structures for (C) the hexagonal [0001]
nanowire with a diameter of 16.5 Å. The DFT calculation was
performed using the SIESTA package.
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to their nearest inner Zn neighbors to 3.07 Å. The exception
is the smallest nanowire, where the relaxations are more
pronounced, with 2.86 Å as the minimal distance between
Zn atoms. For these wires, the energy band structures along
the Γ-Z direction in the Brillouin zone appeared in good
agreement with DFT results,42 with a direct band gap at the
Γ-point, which shrinks from 4.1 to 3.6 eV as the nanowire
diameter increases, indicating quantum confinement effects.

The relative stability of the nanowires is also in good
agreement with plane waves calculations by Xu et al.,12 who
also demonstrated that for hexagonal nanowires the formation
energy depends linearly on the ZnO surface pair ratio. To
further validate the parameters, we calculated [0001]-oriented
ZnO nanobelts and found a similar linear dependence, as
shown in Figure 7. The nanobelts were found to have their
relaxations consistent with those observed for their dominant
surfaces, with their stabilities lying between that of the
corresponding nanowire and that of the infinite thin film. It
should be noted that the relative stability of the nanobelts
increases with their width, as expected.

3.4. Adsorption of Small Molecules on ZnO Surfaces.
The results achieved in describing ZnO surfaces encouraged
us to start validating our parametrization for the Zn-H,
Zn-C, and Zn-N interactions by investigating the adsorp-
tion of small species (atomic H, NH3, and CO2) on the (101_0)
ZnO. We analyzed their geometrical configurations on the
surface and also their adsorption energies, defined as Eads )
(ET - EZnO-101_0 - nµ)/2, where ET is the ZnO-adsorbate
complex total energy, EZnO-101_0 is the energy of the bare slab,
µ is the adsorbate chemical potential, and n is the number
of adsorbed species. The factor 1/2 is used because we have
two equivalent surfaces.

For the H-covered surfaces, we used the hydrogen chemi-
cal potentials equal to 1/2 H2 total energy. In accordance with
ab initio investigations,43-45 our results suggest that the
Zn-H bond is less energetically favorable, as the half-
monolayer coverage was found to be ∼1 eV more stable
than the monolayer. In both cases, the SCC-DFTB Eads is
slightly overestimated in comparison with first-principles
results. The surface geometry for the monolayer coverage
is also in reasonable agreement with the B3LYP predictions
(Table 4).

For the CO2-covered surfaces, the DFTB results (Figure
8) are in good agreement with recent DFT ones,46 which
show a tridentate surface carbonate (TSC) as the stable
adsorbate species in the activation of CO2 over ZnO. By
using the CO2 chemical potential as a variational parameter,47

we obtained a phase-stability diagram similar to that proposed
in ref 46. It should be noted that our Eads values are
overestimated by ∼0.5 eV per CO2 molecule in comparison
to those from ref 46. This deviation is not surprising, since
our model overestimates the Zn-O bond strength in com-
parison with those from DFT (Table 2). Therefore, the DFTB

Figure 7. (A) Cross section of the relaxed structure for (101_0)- (top) and (12_10)-faceted (bottom) [0001] ZnO nanobelts with
different widths across the dominating surface calculated with SCC-DFTB. (B) Formation energies of ZnO nanostructures grown
along the [0001] direction, for hexagonal nanowires, (101_0)- and (12_10)-faceted nanobelts, as a function of the nanostructure
width and surface pair ratio.

Table 4. Comparison between SCC-DFTB and B3LYP/
6-311+G(d,p) Results43 for Hydrogen Monolayer Adsorp-
tion on ZnO (101_0) Surfacea

SCC-DFTB B3LYP

Eads (eV) -0.77 -0.62
r(Zn-H) (Å) 1.74 1.59
r(O-H) (Å) 0.99 0.99
θ(Zn-H) (deg) 31 41
θ(O-H) (deg) 28 38

a The angle θ represents the inclinations of the X-H bond (X )
Zn or O) to the surface normal direction.
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adsorption energy related to the TSC structure is also
overestimated in comparison with those from DFT, and the
DFTB phase diagram is shifted toward lower CO2 chemical
potentials consequently. It is interesting to observe that the
interaction with the CO2 molecule strongly influences the
surface geometry by pushing the Zn atoms outward and
decreasing the angle R to 89° and increasing the ZnO dimer
distance dZn-O to 2.29 Å.

ZnO has been also considered as a promising material for
sensing NH3 in gas phase,48 but there are only a few
theoretical studies on the absorption of ammonia on ZnO
surfaces,49 in which cluster models were employed to
investigate single-molecule adsorption. A strong binding
energy (∼1.8 eV)49 was reported for the H3N-ZnO surface
complex, which is not surprising given the basicity of NH3

and the acidic character of zinc in ZnO. This strong binding
energy and the small molecular volume of ammonia in
comparison to CO2 indicate that adsorption of NH3 on
ZnO(101_0) surfaces can also lead to the formation of self-
assembled monolayers.

Our results show that ammonia binds to the ZnO surface
through a covalent N-Zn bond (2.05 Å), thus reducing the
angle R to 115° and increasing the ZnO dimer distance dZn-O

to 1.96 Å. As expected, no ammonia dissociation was found.
Instead, there is a typical hydrogen bond distance of 1.68 Å
between ammonia hydrogen and ZnO oxygen. The NH3

tilting angle with respect to the surface normal of 41° is in
fairly good agreement with near-edge X-ray fine-structure
spectroscopy reported by Kamada et al.50 Additionally, our

results (cf. Figure 9) agree very well with coupled-cluster
calculations by Taft et al.49

3.5. Modeling Zinc in Biological Systems. As a first step
toward validating the parameters for Zn-containing biomol-
ecules, we simulated small zinc complexes with NH3 and
SH- ligands and found a reasonable agreement between our
SCC-DFTB and B3LYP results (Table 5). We also repro-
duced recent B3LYP geometry parameters for cyclic ZnCn

(n ) 2-5) clusters51 and found the errors in the Zn-C and
C-C bonds to be smaller than 0.05 Å in all cases.

By applying the procedure suggested by Elstner et al.,19

we calculated three zinc-containing complexes to model zinc
interactions with specific functional groups in proteins, using
SH-, CH2dNH, and HCOO- ligands to represent the thiol

Figure 8. Top: Geometry of the TSC structure calculated with
SCC-DFTB. The bond length values in the parentheses are
DFT results taken from ref 46. The angles calculated with
DFTB coincide exactly with those reported in ref 46. Bottom:
Phase-stability diagram calculated with SCC-DFTB for differ-
ent coverages of CO2 on ZnO (101_0) surfaces.

Figure 9. Top: Geometry of the H3N-ZnO surface complex
calculated with SCC-DFTB. The values in the parentheses
are ab initio results taken from ref 49. Bottom: Phase-stability
diagram calculated with SCC-DFTB for different coverages
of NH3 on ZnO (101_0) surfaces.

Table 5. Comparison between SCC-DFTB and B3LYP/
6-311+G(d,p) Cohesive Energies and Equilibrium
Geometries for Zinc Complexes Containing NH3 and HS-

Ligands

Ecoh (eV)
bond length
(Å) (Zn-X)

bond angles
(deg) (X-Zn-X)

species
SCC-
DFTB B3LYP

SCC-
DFTB B3LYP

SCC-
DFTB B3LYP

Zn-N
[ZnNH3]2+ 5.36 5.98 1.93 1.97
[Zn(NH3)2]2+ 11.86 10.70 1.92 1.95 180 180
[Zn(NH3)3]2+ 13.96 13.34 1.97 2.03 119.9 119.5
[Zn(NH3)4]2+ 16.75 15.3 2.02 2.09 109.5 109.4

Zn-S
[Zn(SH)]+ 18.06 18.35 2.03 2.18
Zn(SH)2 27.81 27.56 2.21 2.19 177.5 178.4
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group in cysteine, the imidazole group in histidine, and the
carboxylate group present in all amino acids, respectively.
Figure 10 depicts the geometries of the investigated com-
plexes, whereas Table 6 summarizes their geometrical
characteristics calculated with B3LYP and two different
SCC-DFTB parametrizations (i.e., the current one and that
in ref 19). In comparison with DFT results, both DFTB
parametrizations describe the Zn-X (X ) S, N, O) reason-
ably well: Zn-S bond lengths in complex 1 were found to
be longer by up to 2% compared to DFT ones, whereas the
same bonds in complex 2 are described with an accuracy of
0.8% or better with the current parameters. Similar trends
were found in the case of Zn-O bond lengths, with errors
around 5 and 2.6% in comparison with DFT values for
complexes 1 and 3, respectively. The nonbonded Zn-O3

distance in complex 3 is also in a good agreement with DFT

ones (cf. Table 6). The current parametrization leads to
underestimation of the Zn-N bond lengths, as exemplified
by both complexes 1 and 3 (within 7 and 5.6% differences
to DFT, respectively).

Also, the bond angles are reasonably described with both
DFTB parametrization. Our S-Zn-S values in complexes
1 and 2, for instance, agree within 6.6 and 3.3%, respectively,
in comparison with DFT results. It should be noted that some
bond angles disagree even up to 10° with DFT, which may
indicate a relatively floppy bending potential-energy profile.

Table 7 lists formation energies of complexes under study
calculated as the difference between the total energy of the
complex and those of reactants. It can be inferred from these
data that the current SCC-DFTB parametrization leads to
an overbinding of ligands in zinc complexes with the largest
error to DFT of 0.3 eV (37%) for the first reaction, and 0.1
eV (4.5%) and 1.2 eV (17.2%) for the second and third
reaction, respectively. This finding is, however, in line with
the general overbinding trend of the DFTB method, and one
can safely conclude that the current parametrization is equally
applicable to model zinc in biological environment and solid-
state systems.

4. Conclusions

In this work, we presented a new SCC-DFTB parametrization
for Zn-X interactions (X ) H, C, N, O, S, and Zn), which
demonstrated a reliable performance in representing the zinc-
containing systems, including bulk phases (hcp-Zn, w-ZnO,
and zb-ZnS), ZnO surfaces (clean and with adsorbates), ZnO
nanostructures, and model zinc biomolecules. Our results
indicate that this new set is universal, being transferable

Figure 10. Optimized geometries of model zinc complexes calculated with SCC-DFTB.

Table 6. Comparison of Geometric Parameters of Model
Zinc Complexes Calculated with B3LYP/6-311+G(d,p) and
SCC-DFTB Methodsc

method

complex B3LYPa SCC-DFTBa SCC-DFTBb

1: Zn(SH)2(CH2dNH)EtOH
r(Zn-S1) 2.261 2.258 2.301
r(Zn-S2) 2.261 2.243 2.290
r(Zn-O) 2.272 2.288 2.158
r(Zn-N) 2.155 2.056 2.001
∠ (S1-Zn-S2) 143.5 140.3 134.0
∠ (S2-Zn-O) 91.2 102.8 105.4
∠ (S1-Zn-N) 106.9 104.1 105.4

2: [MeSH-Zn-SMe]+

r(Zn-S1) 2.349 2.293 2.329
r(Zn-S2) 2.152 2.123 2.169
r(S1-C) 1.853 1.832 1.831
∠ (C-S1-Zn) 104.9 108.0 104.9
∠ (S1-Zn-S2) 175.1 169.1 169.9
∠ (Zn-S2-C) 105.8 110.2 105.5

3: Zn(OH)(HCOO)(CH2dNH)2

r(Zn-O1) 1.876 1.906 1.868
r(Zn-O2) 1.972 2.080 2.023
r(O2-C3) 1.282 1.301 1.304
r(C3-O3) 1.237 1.241 1.251
r(Zn-O3) 3.010 2.911 2.931
r(N1-C1) 1.270 1.267 1.262
r(Zn-N2) 2.129 2.045 2.009
∠ (O1-Zn-O2) 131.6 109.1 125.8
∠ (N1-Zn-N2) 103.3 102.7 104.1
∠ (N2-Zn-O1) 100.3 104.0 109.8

a Reference 19. b Using current parametrization; this work.
c Bond lengths are in angstroms, and angles are in degrees.

Table 7. Comparison of Formation Energies (in
Kilocalories per Mole) of Model Zinc Complexes Calculated
with B3LYP/6-311+G(d,p) and SCC-DFTB Methods

method

B3LYP SCC-DFTBa SCC-DFTBb

reaction 1c -14.7d -12.3 -20.1
reaction 2e -50.9f -53.2
reaction 3g -159.4d -180.9 -186.9

a Reference 19. b Using current parametrization; this work.
c (EtOH) + Zn(SH)2(CH2dNH) f Zn(SH)2(CH2dNH) (EtOH).
d B3LYP/6-311+G(d,p) data from ref 19 (see the supporting
materials to the article in ref 19). e CH3SH + [Zn(SCH3)]+ f
[MeSH-Zn-SMe]+. f This work. g OH- + [Zn(HCOO)(CH2dNH)2]+

f Zn(OH)(HCOO)(CH2dNH)2.
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among several different chemical environments, and aims
to be a promising computational approach for future in-depth
explorations of the properties of complex zinc-containing
systems (e.g., ZnO-based hybrid materials or active sites of
enzymes).
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We thank Christof Köhler, Thomas Niehaus, and Simone
Sanna for fruitful discussions.

References

(1) Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang,
P. Nat. Mater. 2005, 4, 455–459.

(2) Li, Y.; Meng, G. W.; Zhang, L. D.; Phillipp, F. Appl. Phys.
Lett. 2000, 76, 2011–2013.

(3) Wang, X.; Song, J.; Li, P.; Ryou, D. R.; Dupuis, H. J.;
Summers, C. J.; Wang, Z. L. J. Am. Chem. Soc. 2005, 127,
7920–7923.

(4) Hughes, W. L.; Wang, Z. L. Appl. Phys. Lett. 2005, 86,
043106.

(5) Wen, X. G.; Fang, Y. P.; Pang, Q.; Yang, C. L.; Wang, J. N.;
Ge, W. K.; Wong, K. S.; Yang, S. H. J. Phys. Chem. B 2005,
109, 15303–15308.

(6) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947–
1949.

(7) Xu, X. Y.; Zhang, H. Z.; Zhao, Q.; Chen, Y. F.; Xu, J.; Yu,
P. D. J. J. Phys. Chem. B 2005, 109, 1699–1702.

(8) Tian, Z. R.; Voigt, J. A.; Mackenzie, B.; Mcdermott, M. J. Am.
Chem. Soc. 2002, 124, 12954–12955.

(9) Lui, R.; Vertegel, A. A.; Bohannan, E. W.; Sorenson, T. A.;
Switzer, J. A. Chem. Mater. 2001, 13, 508–512.

(10) Tian, Z. R.; Voigt, J. A.; Mackenzie, B.; Mcdermott, M.;
Rodrigues, M. A.; Konishi, H.; Xu, H. Nat. Mater. 2003, 2,
821–826.

(11) Taratula, O.; Galoppini, E.; Wang, D.; Chu, D.; Zhang, Z.;
Chen, H.; Saraf, G.; Lu, Y. J. Phys. Chem. B 2006, 110,
6506–6515.

(12) Xu, H.; Zhang, R. Q.; Zhang, X.; Rosa, A. L.; Frauenheim,
Th. Nanotechnology 2007, 18, 485713.

(13) Kohan, A. F.; Ceder, G.; Morgan, D.; Van der Walle, C. G.
Phys. ReV. B 2000, 61, 15019–15027.

(14) Porezag, D.; Frauenheim, Th.; Köhler, Th.; Seifert, G.;
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Abstract: United-atom force fields for molecular dynamics (MD) simulations provide a higher
computational efficiency, especially in lipid membrane simulations, with little sacrifice in accuracy,
when compared to all-atom force fields. Excellent united-atom lipid models are available, but in
combination with depreciated protein force fields. In this work, a united-atom model of the lipid
1,2-dipalmitoyl-sn-glycero-3-phosphocholine has been built with standard parameters of the force
field GROMOS96 53a6 that reproduces the experimental area per lipid of a lipid bilayer within
3% accuracy to a value of 0.623 ( 0.011 nm2 without the assumption of a constant surface
area or the inclusion of surface pressure. In addition, the lateral self-diffusion constant and
deuterium order parameters of the acyl chains are in agreement with experimental data.
Furthermore, models for 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-
glycerol (POPG) result in areas per lipid of 0.625 nm2 (DMPC), 0.693 nm2 (POPC), and 0.700
nm2 (POPG) from 40 ns MD simulations. Experimental lateral self-diffusion coefficients are
reproduced satisfactorily by the simulation. The lipid models can form the basis for molecular
dynamics simulations of membrane proteins with current and future versions of united-atom
protein force fields.

Introduction

Proteins associated with lipid membranes constitute ap-
proximately 30% of genomes2 and are estimated to form
more than half of all drug targets.3 However, because of well-
known experimental problems in membrane protein structure
determination, the number of atomic-resolution structures of
soluble proteins far exceeds the number of membrane protein
structures. Therefore, membrane proteins have been a popular
target for computational modeling4 as well as model building
based on limited experimental data.5 Additionally, the slowly
growing repository of high-resolution membrane protein
structures6 forms a resource for atomic-level studies of
function and conformational change. As membrane protein
simulations with explicit solvents require in excess of 30 000
atoms, molecular dynamics (MD) simulations based on
classical mechanics are usually applied.7,8 A key ingredient
of MD simulations is the force field composed of a set of
mathematical functions and parameters that describe all of

the bonded and nonbonded interactions between particles.
Widely used biomolecular force fields are Amber,9

CHARMM,10 OPLS-AA,11 and GROMOS,12 the first three
of which are all-atom force fields, whereas GROMOS is a
united-atom force field that subsumes nonpolar hydrogen
atoms into their adjacent carbon atom. While the accuracy
of the force fields for protein modeling is comparable,13 the
united-atom approach poses a distinct advantage for mem-
brane systems, reducing the number of particles by up to
60%; for example, a united-atom model of 1,2-dipalmitoyl-
sn-glycero3-phosphocholine (DPPC) is composed of 50
particles, while the corresponding all-atom model consists
of 130 particles. Accurate force field parameters and lipid
models are available for the all-atom CHARMM force
field.14,15 Additionally, lipid models for the all-atom General
Amber Force Field (GAFF) have been developed recently16,17

that required the incorporation of surface tension in order to
achieve the experimental lipid surface area. For the CHARMM
force field, a united-atom model of 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC) is available18 that was* Author e-mail: a.kukol@herts.ac.uk.
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used with constant area simulations in order to reproduce
the experimental area per lipid ratio. Most united atom
models of lipid molecules are based on the parameters
developed by Berger et al.19 within the united atom version
of the OPLS force field.20 Lipid models based on the Berger
et al. parameters have been transferred to the united-atom
GROMOS87 force field and used successfully for many lipid
membrane MD simulations and membrane proteins. The
united atom models for various lipids have successfully
reproduced the most widely cited experimental data of area
per lipid molecule within 2% accuracy as well as self-
diffusion constants and order parameters for lipid bilayers
without inclusion of surface tension or constant area simula-
tions. Since GROMOS87,21 the GROMOS force field has
undergone significant revisions, with GROMOS96 in 199622

up to the latest versions 53a5 and 53a6 of the GROMOS96
force field.12 The model of the DPPC lipid included in the
latest 53a6 and previous versions of the force field distribu-
tion has unfortunately failed to reproduce the experimental
parameters of DPPC membranes to satisfactory accuracy,
as shown by various studies23,24 as well as in this report.
This has led to the paradoxical situation where many recent
united-atom membrane protein simulations have used the
GROMOS87 force field with lipid parameters based on
Berger et al.25-28 The problem with this approach is that
MD simulations reproduce lipid bilayer attributes very well,
while the membrane protein at the focus of interest may not
be treated with comparable accuracy to other modern protein
force fields. Some studies used a combination of the united-
atom Berger et al. parameters and the all-atom OPLS force
field, but the combination of different force fields is not
straightforward and requires considerable care.29 Ideally, lipid
models should be developed with the same atom types,
bonded and nonbonded parameters that are applied to the
protein.

In order to support molecular dynamics simulations
focused on membrane proteins, this work reports the
development and evaluation of models of DPPC, 1,2-di-
myristoyl- sn-glycero-3-phosphocholine (DMPC), POPC, and

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG)
with GROMOS96 53a6 force field parameters that reproduce
the experimental area/lipid ratio to a sufficient accuracy, in
cases where experimental data for comparison is available.
The lipid bilayer coordinates after 40 ns of MD simulations
as well as the lipid models (topologies) are available as
Supporting Information.

Methods

Initial Structures. Initial coordinates of a 128-lipid DPPC
bilayer hydrated with 3655 water molecules based on 2 ns
equilibration,30 a 128-lipid DMPC bilayer31 with 3655 water
molecules, and a POPC bilayer32 with 2460 water molecules
have been obtained from P. Tielman’s Web site (http://
moose.bio.ucalgary.ca). The initial coordinates of a 128-
molecule POPG bilayer neutralized with 128 Na+ counterions
and hydrated with 3527 water molecules33 have been
obtained from M. Karttunen’s Web site (http://www.apmath-
s.uwo.ca/∼mkarttu). The racemic POPG bilayer was com-
posed of equal numbers of L-POPG and D-POPG.

Molecular Topologies. For DPPC simulations, three
different models (topologies) were investigated on the basis
of the topology included in the GROMOS96 53a6 force field
distribution. DPPC1 uses the original topology file without
any alterations. DPPC2 has been modified with the partial
charges of the lipid headgroup due to Chiu et al.,34 with a
subdivision into four charge groups as suggested by Chan-
drasekhar et al.24 (model C in that publication). DPPC3 uses
the partial charges model of DPPC2 with a different ester-
carbonyl carbon atom type, “CH0” instead of “C” as
suggested previously.24 This resulted in a van der Waals
radius for the carbonyl-ester of 0.664 nm for atom type
“CH0”, as opposed to 0.336 nm for atom type “C”. The atom
numbering scheme of all lipid models is shown in Figure 1.

The DMPC model was based on DPPC3, with two united-
atom CH2 groups less in each aliphatic carbon chain.

The POPC1 model adopted the same partial charges
distribution for the lipid headgroup and torsion potentials as

Figure 1. Definition of the atom numbers and torsion angles for the lipid models DPPC (A), POPC (B), and POPG (C).
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DPPC3, while different bonded parameters were used in
order to model the double bond, as shown in Table 1. The
model POPC2 contains additional torsion potentials in the
vicinity of the double bond (shown in Figure 1B), which
have been developed previously by Bachar et al.35 on the
basis of ab initio calculations. The potentials included are

V(�2))-5.865+ 7.470[1+ cos(�2 - 180°)]+

3.99[1+ cos(2�2)]+ 1.1[1+ cos(3�2 - 180°)]

V(�3)) 3.35[1+ cos(�3)]- 1.66[1+ cos(2�3 - 180°)]+

7.333[1+ cos(3�3)]

For computational efficiency, the torsion potential V(φ1) has
been left unchanged as a standard Gromos9612 improper
torsion potential, and V(φ4) is described as Gromos96
dihedral type 34. It has been shown that the dihedral angle
distributions for φ1 and φ4 with Bachar et al. potentials are
similar to the situation where standard potentials are used.36

The POPG model provided by Karttunen et al.33 (for the
two steroisomers D-POPG and L-POPG) has been translated
into the GROMOS96 53a6 topology, while the partial
charges for the glycerol headgroup have been retained. Atom
types and charges are shown in Table 2. Bond and bond
angle parameters are shown in Table 3, and torsion potientials
for the lipid headgroup are shown in Table 4. The carbon
chains of POPG1 have been modeled in the same way as

POPC1, while for POPG2, the Bachar et al.35 torsion
potentials have been included as described above for POPC2.
A POPG3 model has been generated that is indentical to
POPG1, apart from the atom type “C” for the ester carbonyl
atom, as used before in DPPC1 and DPPC2. The topologies
are available as Supporting Information.

ErbB2 Transmembrane Domain Simulation. The start-
ing coordinates of the ErbB2 transmembrane domain se-
quence GCPAEQRASPLTSIISAVVGILLVVVLGVVFGI-
LIKRRQQKIRK were obtained from the RCSB Protein Data
Bank37 (PDB ID: 2JWA). This structure was originally
obtained by NMR spectroscopy from the peptide in 1,2-
dihexanoyl-sn-glycero-3-phosphocholine/DMPC bicelles at
313 K.38 For the MD simulation, the peptide was inserted
into a pre-equilibrated DMPC lipid bilayer using a series of
scaling and energy minimization steps, as described by Kandt
et al.39 Chloride ions were added at positions of most
favorable electrostatic potential in order to neutralize the
system. The resulting peptide/lipid/ions/water system con-
tained 103 DMPC molecules, 12 chloride ions, and 5749
water molecules. MD simulations were carried out with the

Table 1. POPC Atom and Bond Parameters for the CdC
Double Bonda

atom 1 atom 2 atom 3 atom 4 code remark

24 CR1
25 CR1
24 25 gb_10 double bond
23 24 25 ga_27
24 25 26 ga_27
23 24 25 26 gi_1 improper dihedral

a For the definition of atom numbers, see Figure 1b. The
meaning of the codes is given in the publication describing the
GROMOS96 53a6 force field.12

Table 2. Atom Types and Charges for the POPG Head
Groupa

atom no. code charge

1 H 0.4170
2 OA -0.5740
3 CH2 0.1570
4 CH1 0.1570
5 OA -0.5740
6 H 0.4170
7 CH2 0.4000
8 OE -0.8000
9 P 1.7000
10 OM -0.8000
11 OM -0.8000
12 OE -0.7000
13 CH2 0.4000
14 CH1 0.3000
15 OE -0.7000
16 CH0 0.7000
17 O -0.7000

a For the definition of atom numbers, see Figure 1c. The
meaning of the codes is given in the publication describing the
GROMOS96 53a6 force field.12

Table 3. Bond and Bond Angle Parameters for the POPG
Head Groupa

atom 1 atom 2 atom 3 code

1 2 gb_1
2 3 gb_13
3 4 gb_27
4 5 gb_13
5 6 gb_1
4 7 gb_27
7 8 gb_18
8 9 gb_28
9 10 gb_24
9 11 gb_24
9 12 gb_28
12 13 gb_18
14 15 gb_27
15 16 gb_10
16 17 gb_5
1 2 3 ga_12
2 3 4 ga_13
3 4 5 ga_13
4 5 6 ga_12
5 4 7 ga_13
3 4 7 ga_13
4 7 8 ga_13
4 7 8 ga_15
7 8 9 ga_26
8 9 10 ga_14
8 9 11 ga_14
8 9 12 ga_5
9 12 13 ga_26
10 9 11 ga_29
10 9 12 ga_14
11 9 12 ga_14
12 13 14 ga_15
13 14 15 ga_13
13 14 35 ga_13
14 15 16 ga_22
14 35 36 ga_15
15 14 35 ga_13
15 16 17 ga_31
15 16 18 ga_16
16 18 19 ga_15

a For the definition of atom numbers, see Figure 1c. The
meaning of the codes is given in the publication describing the
GROMOS96 53a6 force field.12
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GROMACS force field based on GROMOS87 and Berger
et al.19 lipid parameters and, in addition, with the GRO-
MOS96 53a6 force field and the DMPC model developed
in the present study. The lipid and water molecules were
allowed to equilibrate around the peptide during a 10 ns MD
simulation at 314 K with position restraints applied to the
peptide atoms. The position restraint MD simulation was
followed by unrestrained MD simulations over 20 ns. All
simulations performed are summarized in Table 5.

Simulation Parameters. All simulations were performed
with the GROMACS simulation package,40-42 version 3.3.2.
The NpT ensemble and periodic boundary conditions were
used, while the temperature was kept constant with the
Berendsen thermostat43 at 325 K for all DPPC simulations,

at 314 K for DMPC, and at 298 K for POPC and POPG,
with a coupling time constant of 0.1 ps. We chose the
temperature such that it was at least 10 K above the gel to
liquid-crystalline phase transition temperature. The phase
transition temperature of POPC and POPG is below 273 K;
therefore, the standard thermodynamic temperature of 298
K was chosen. Lipid and water molecules were coupled
separately to the thermostat; in the case of POPG, water
molecules and 128 sodium ions were jointly coupled to the
thermostat. Semianisotropic Berendsen pressure coupling43

was applied with separate coupling to the z direction (the
bilayer normal) and the xy plane with a coupling time
constant of 2.0 ps in order to maintain a constant pressure
of 1.0 bar. For Lennard-Jones interactions, a cutoff at 1.4
nm was applied, while electrostatic interactions were treated
with the particle mesh Ewald (PME) method44,45 and a real-
space cutoff of 0.9 nm. A larger than usual Lennard-Jones
cutoff was used in order to increase the accuracy of the van
der Waals interactions. Electrostatic interactions were treated
with the PME method, which does not introduce artificial
ordering like cutoff methods.46 The real-space cutoff of 0.9
nm used with the PME method is merely a numerical device
in order to separate the direct- and reciprocal-space sums.
Long-range dispersion corrections for energy and pressure
were applied. All systems were first subjected to 1000 steps
of energy minimization, followed by a 40 ns MD simulation
with a time step of 2 fs. The lipid molecule bonds were
constrained with the LINCS algorithm,47 while the water
molecules were constrained with the SETTLE algorithm.48

All simulations were carried out on a dual-processor dual-
core AMD Opteron 2.66 GHz workstation (DNUK, Ashton-
under-Lyne, United Kingdom).

Data Analysis. The area per lipid molecule was calculated
from the lateral x and y dimensions of the simulation box
divided by the number of lipid molecules in one leaflet of
the bilayer. The reported average area per lipid was taken
over the time from 20 to 40 ns.

Lateral diffusion coefficients for lipid molecules were
calculated from the mean square displacement (MSD) of
the center of mass 〈(r(t + τ) r(τ))2〉 , where 〈〉 refers to the
average taken over all starting times τ and r(t) to the position
of the center of mass at time t. The lateral diffusion
coefficient is then given by the Einstein relation MSD )
4Dlatt in two dimensions for long times t and is averaged
over 128 lipid molecules. In order to obtain the long-range
diffusion coefficients, the MSD was fitted between 20 and
38 ns. Calculations have been performed with the g_msd
program of the GROMACS suite. Diffusion constants were
not further corrected for random motions of the lipid
monolayer, as it was found to be insignificant under periodic
boundary conditions.

The deuterium order parameter SCD for the carbon tails is
calculated from the elements of the order parameter tensor
Sxx ) 1/2〈(3 cos2 Ri - 1)/2〉 and Syy as SCD ) 2/3Sxx + 1/3Syy.
The angle Ri is the angle between the molecular axis given
by the carbon atoms Ci-1 and Ci+1 and the lipid bilayer
normal; the average is taken over the time of 20-40 ns and
for all lipid molecules. Calculations have been performed
with the g_order program of the GROMACS suite.

Table 4. Torsion Potentials for the POPG Head Groupa

atom 1 atom 2 atom 3 atom 4 code

1 2 3 4 gd_23
6 5 4 7 gd_23
5 4 7 8 gd_18
2 3 4 5 gd_18
2 3 4 7 gd_33
2 3 4 7 gd_17
3 4 5 6 gd_23
3 4 7 8 gd_33
3 4 7 8 gd_17
4 7 8 9 gd_29
7 8 9 12 gd_20
7 8 9 12 gd_27
8 9 12 13 gd_20
8 9 12 13 gd_27
9 12 13 14 gd_29
12 13 14 15 gd_34
12 13 14 35 gd_34
12 13 14 35 gd_17
13 14 35 36 gd_34
13 14 35 36 gd_17
13 14 15 16 gd_29
14 35 36 37 gd_29
14 15 16 18 gd_13
15 14 35 36 gd_18
15 16 18 19 gd_40

a For the definition of the atom numbers, see Figure 1c. The
meaning of the codes is given in the publication describing the
GROMOS96 53a6 force field.12

Table 5. Overview of Simulations Performeda

model features

DPPC1 original model included in GROMOS96 53a6 force
field

DPPC2 based on DPPC1, different partial charges of the
headgroup atoms

DPPC3 based on DPPC2, larger carbonyl-ester atoms,
atom type “CH0”

DMPC same as DPPC3 with shorter acyl chains
POPC1 based on DPPC3, with unsaturated chain
POPC2 based on POPC1, changed torsion potentials next

to double bond
POPG1 based on POPC1, with glycerol headgroup
POPG2 based on POPC2, with glycerol headgroup
POPG3 based on POPC1, smaller carbonyl-ester type

“C” (data not shown)
ErbB2/DMPC ErbB2 transmembrane peptide with GROMACS

force field and Berger lipids
ErbB2/DMPC ErbB2 transmembrane peptide and lipids with

GROMOS96 53a6 force field

a Models in boldface are recommended and included in the
Supporting Information.
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The radial distribution function of water hydrogens aver-
aged between 20 and 40 ns around the ester carbonyl atoms
of the sn1 and sn2 chains was calculated with the g_rdf
program of the GROMACS suite.

The angles between the P-N vector of the lipid head-
groups and the z axis were calculated with a Perl script
developed in-house.

Results

DPPC. Lipid bilayers with three different DPPC models
have been subjected to 40 ns MD simulation, and the time
evolution of the area per lipid molecule has been calculated.
The area per lipid molecule is the most widely used
parameter for the characterization of lipid bilayers, as it is
related to various other properties of the membrane like
the lateral diffusion, membrane elasticity, or permeation.
Figure 2 shows the area per lipid dependent on time for three
different DPPC models. From the curves in Figure 2, the
equilibration time of the simulation has been estimated
qualitatively as less than 20 ns; thus, the period between 20
and 40 ns has been used to calculate average properties. For
DPPC1, the original model included in the GROMOS force
field distribution, the area per lipid reached an average of
0.436 ( 0.002 nm2. Model DPPC2, which has alternative
headgroup charges according to Chiu et al.,34 reached an
average area per lipid of 0.568 ( 0.007 nm2, while the
change of the ester carbonyl atom type from “C” to “CH0”
in model DPPC3 led to an average area per lipid of 0.623 (
0.011 nm2, which is within a range of 3% of the experimental
value of around 0.64 nm2.49,50

The deuterium order parameters |SCD| dependent on the
carbon atom number along the hydrocarbon tails show
excellent agreement with experimental data51 (Figure 3).
There is some deviation from the experimental results for
carbon-2 of the sn1 chain, which corresponds to atom number
36 in Figure 1A.

The interactions between lipid and water molecules have
been analyzed by calculating the radial distribution function
of water hydrogens around the carbonyl-ester atoms for the
sn1 and sn2 chains of DPPC (Figure 4). It is obvious from
prominent peaks of the radial distribution function that water
effectively solvates the carbonyl-oxygen atoms of both chains
in the DPPC3 model (solid line). The more water-exposed
carbonyl atom of the sn2 chain achieves a stronger solvation,
as indicated by the higher peak amplitude of the radial
distribution function. In clear contrast, the DPPC1 model
(dotted line) shows no significant solvation by water
hydrogen atoms.

The molecular basis of these results can bee seen in the
snapshot of the simulation trajectory of a lipid bilayer
constructed with DPPC1 (Figure 5A) and that constructed
with DPPC3 (Figure 5B), both taken at 40 ns. The DPPC3
bilayer shows water penetrating into the lipid headgoup
region, and the lipid acyl chains seem to be in a clearly
disordered liquid-crystalline state, while acyl chains are
highly ordered in the case of DPPC1 (Figure 5A). The same
liquid-crystalline state is adopted by DPPC2 (not shown).

The angle between the lipid headgroup dipole moment as
defined by the P-N vector and the z axis is 90° ( 2 for
DPPC1, 91° ( 3 for DPPC2, and 90° ( 2 for DPPC3,
averaged over all lipid molecules during the last 20 ns of
the simulation. This is similar to the starting structure
obtained from a previous simulation,30 which yields an angle
of 89° ( 2 between the P-N vector and the z axis averaged
over 128 lipid molecules.

The lateral diffusion of lipid molecules is characterized by
fast fluctuations in the limited space provided by surrounding
lipids as well as by long-range diffusion throughout the lipid
bilayer leaflet. The long-range diffusion coefficient for DPPC3
given in Table 6 shows good agreement with experimental data
obtained from the literature.

DPMPC, POPC, and POPG. Lipid models (topologies)
for DMPC, POPC, and POPG are not provided with the

Figure 2. Area per lipid ratio dependent on MD simulation time for a 128-molecule lipid bilayer obtained with various lipid
models: DPPC1 (black curve), DPPC2 (dark gray), and DPPC3 (light gray). The lipid models are explained in the text. The
dashed line indicates the currently accepted experimental value for the area per lipid ratio.50
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GROMOS force field distribution. On the basis of the DPPC3
model, the DMPC model has been created by reducing the
number of carbon atoms from 16 to 14 in each acyl chain
and leaving all other parameters unchanged. The change of
area per lipid ratio with simulation time shown in Figure 6
reveals that the bilayer is equilibrated almost immediately,

because the DMPC bilayer based on Berger et al.19 param-
eters has been used as the initial structure. The area per lipid
averaged over the last 20 ns of the trajectory reaches a value
of 0.625 ( 0.005 nm2, and the lipid lateral diffusion constant
is 5.7 × 10-8 ( 0.3 cm2 s-1 (Table 6).

Two models of POPC have been evaluated. The POPC1
model is based on DPPC3, while different atom types, bond
types, and torsion potentials (Table 1) have been used in
order to model the double bond. In POPC2, the torsion
potentials for bonds adjacent to the double bond (φ2 and φ3

in Figure 1B) have been replaced with potentials developed
by Bachar et al.35 The area per lipid ratio equilibrates for
both models after 5 ns and reaches an average value of 0.654
( 0.008 nm2 for POPC1 and 0.693 ( 0.005 nm2 for POPC2,
which is closer to the experimental value of 0.683 nm2 (Table
6). The lateral diffusion constant of POPC1 is 3.0 × 10-8 (

Figure 3. Comparison of the deuterium order parameters along the carbon atoms of the lipid acyl tails from simulation (O) and
those from experimental results (*). (A) The sn1 chain. (B) The sn2 chain. The experimental values are from the sn2 chain in
both parts.

Figure 4. The radial distribution function of water hydrogens
around the carbonyl-ester atoms for the sn1 (A) and sn2
chains (B) of DPPC. The radial distribution function has been
normalized with respect to density and volume. The solid line
represents the data obtained from simulation with the DPPC3
model, while the dotted line has been obtained with the
DPPC1 model. The average between 20 and 40 ns has been
taken.

Figure 5. Snapshot of the MD simulation trajectory at 40 ns
with the lipid models DPPC1 (A) and DPPC3 (B). The figure
was created with VMD.1
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0.1 cm2 s-1 and is 7.4 × 10-8 ( 0.3 cm2 s-1 for POPC2,
which is closer to the experimental value of 8.9 × 10-8

cm2 s-1.52

The POPG1 model uses the same parameters for the acyl
chains as those of POPC1, while the parameters of the
headgroup are shown in Tables 2-4. The charges of the
headgroup atoms are the same as those used by Zhao et al.33

The POPG2 model includes the torsion potentials for bonds
adjacent to the double bond analogous to POPC2. The area
per lipid ratio after 20 ns reaches an average value of 0.635
( 0.008 nm2 for POPG1 and 0.700 ( 0.007 nm2 for POPG2,
while the lateral diffusion coefficient is 7.0 × 10-8 ( 0.2
cm2 s-1 for POPG1 and 7.1 × 10-8 ( 0.5 cm2 s-1 for
POPG2.

In general, the area per lipid values of DPPC3, DMPC,
and POPC2 averaged from the trajectories between 20 and
40 ns show excellent agreement with experimental results
(Table 6). The lateral diffusion constants are of the right order
of magnitude, when compared to experimental values (Table
6), although it should be noted that the experimental
conditions were sometimes different from the simulation, for
example, using fluorescently labeled POPG molecules in
order to measure the diffusion constant.

Since the area per lipid for POPG simulations is different
from those of other simulation studies (see Discussion), an
analysis of the sodium ion distribution has been conducted.
The distribution of sodium ions with respect to the bilayer
normal (z axis) is shown in Figure 7A for the POPG2 bilayer.
Sodium ions penetrate deeply into the lipid headgroup region;
the peak values of the sodium atom density are reached at a
position deeper into the lipid bilayer than the peak values of
the phosphorus atom density.

Sodium atoms are found hexagonally coordinated with the
involvement of one or two lipid molecules, while the free
coordination sites are occupied by water molecules (Figure
7B). In the bulk water, sodium ions are coordinated
hexagonally and pentagonally (Figure 7B). The ester-
carbonyl oxygens of the lipid molecules participate in sodium
coordination as well as the oxygen atoms of glycerol
hydroxyl groups or oxygen atoms of the phosphate ester
group (P-O-C). There is no example of the participation

of terminal oxygens of the phosphate groups in sodium
coordination. Similar findings have been reported by Zhao
et al.,33 albeit with a much smaller area per lipid ratio.

Transmembrane Peptide Simulation. Since the ultimate
aim was to use the lipid models for united-atom membrane
protein simulations, the ErbB2 transmembrane domain has
been subjected to 20 ns MD simulation using the established
GROMOS87/Berger lipids force field combination as well
as the GROMOS96 53a6 force field. Visual analysis of the
trajectory showed that both simulations maintained the
secondary structure and the integrity of the transmem-
brane helix dimer. Structural fluctuations occurred mainly
in the unstructured regions outside the lipid bilayer. The root-
mean-square deviation (rmsd) of the protein backbone with
respect to the starting structure shown in Figure 8 increased
over the first 1000 ps to a value in the region of 0.33 nm.
Both force fields behaved initially identically until 7000 ps,
where the rmsd values began to diverge. The backbone rmsd
averaged between 10 and 20 ns was 0.31 nm ( 0.02 for the
GROMOS96 53a6 force field and 0.42 nm ( 0.02 for the
GROMOS87 force field. A similar divergence was observed
for MD trajectories with different random initial atom
velocities.

Discussion

The development and evaluation of various lipid models with
standard GROMOS96 53a6 force field parameters has been
shown. For DPPC, the most studied lipid molecule, the
important experimental area per lipid ratio has been repro-
duced with the DPPC3 model to a reasonable accuracy of
3% by simulations. The initial improvement of the area per
lipid ratio seen in Figure 2 on going from model DPPC1 to
DPPC2 is caused by the increased penetration of water into
the lipid bilayer headgroup region due to the higher partial
charges on the headgroup atoms in the DPPC2 model, as
reported before.23 The increased water penetration can be
seen clearly from the comparison of the radial distribution
functions of water around lipid carbonyl-ester (Figure 4)
between DPPC1 and DPPC3 (the same for DPPC2, not
shown). Additionally the dipole-dipole interaction between
the lipid headgroups may affect the area per lipid, as
discussed by Wohlert and Edholm.55 The in-plane component
of the headgroup dipole contributes to attractive forces, while
the components perpendicular to the membrane plane repel
each other. The angle between the P-N vector and the z
axis was found to be around 90° in all cases, which would
contribute to attractive forces. The dipole moment of the
headgroup is similar for DPPC1 and DPPC2, because
the sum of the charges on the phosphate group (-1) and the
choline group (+1) is the same for both charge schemes. It
is due to the larger atomic charges of the DPPC2 headgroup
that water penetrated into the lipid headgroup region and
thus overcame parts of the attractive forces. Additionally,
the use of the PME scheme for the treatment of electrostatics
renders the system less vulnerable to electrostatic artifacts
introduced by the cutoff scheme.55

The further increase of the area per lipid in the DPPC3
model is caused by the larger radius of the ester carbon of

Table 6. Comparison of Area Per Lipid, Asim, and Lateral
Self Diffusion Coefficients Dsim Averaged from Trajectories
between 20 and 40 ns for Various Lipid Models to
Experimental Data (Aexp, Dexp)

lipid Asim [nm2]
Aexp

[nm2]
Dsim

[10-8 cm2 s-1]
Dexp

[10-8 cm2 s-1]

DPPC1 0.436 ( 0.002 0.64a 3.0 ( 0.3 9.7
DPPC2 0.568 ( 0.007 0.64a 8.2 ( 0.6 9.7
DPPC3 0.623 ( 0.011 0.64a 6.8 ( 0.4 9.7d

DMPC 0.625 ( 0.005 0.606b 5.7 ( 0.3 14.3e

POPC1 0.654 ( 0.008 0.683c 3.0 ( 0.1 8.87
POPC2 0.693 ( 0.005 0.683c 7.4 ( 0.3 8.87e

POPG1 0.635 ( 0.008 N/Af 7.0 ( 0.2 3.0g

POPG2 0.700 ( 0.007 N/Af 7.1 ( 0.5 3.0g

a Reference 50. b Reference 57. c Reference 64. d Reference 65
(at 333 K). e Reference 52. f 0.64 nm2 for PG prepared from egg
Lecithin,59 0.66 nm2 for a DPPC/DMPG (50:50) monolayer.66

g Reference 67 (obtained from NBD-PG in a supported planar
bilayer composed of 22% POPC and 76.5% POPG).
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0.664 nm in the DPPC3 model compared to the 0.336 nm
chosen in the DPPC1 and DPPC2 models. The molecular
picture of Figure 5 reveals that additionally the disorder of
the acyl chains is markedly increased for the DPPC3 model,
as would be expected for a liquid-crystalline phase. The
addition of further torsion potentials to the DPPC3 model
did not yield any improvement in the area per lipid ratio,
but a slight decrease to 0.61 nm2/lipid was seen (data not
shown). Furthermore, the experimental deuterium order
parameters and the diffusion coefficients are well reproduced
by the DPPC3 model (Figure 3 and Table 6). It can be
concluded that the DPPC3 model with an area per lipid of
0.623 ( 0.011 nm2 achieves high accuracy compared to
experimental data. The results are in line with other studies

Figure 6. Area per lipid ratio dependent on MD simulation time for a 128-molecule lipid bilayer composed of (A) DMPC, (B)
POPC2, and (C) POPG1 (dark curve) and POPG2 (gray curve). The dashed lines indicate the experimental value, and the gray
shaded area indicates a probable range of experimental area per lipid ratios for POPG.

Figure 7. Characteristic features of the POPG bilayer. Panel
A shows the atom number density of sodium (solid line) and
phosphorus (dotted line) dependent on the z coordinate, the
normal to the bilayer plane. Panel B shows snapshots from
the MD trajectory taken at 38 ns of various modes of sodium
interactions with lipid and water molecules. Panel B was
created with Rasmol.53,54

Figure 8. Root-mean-square deviation (rmsd) of the back-
bone atoms with respect to the experimental structure for the
MD simulation of the ErbB2 transmembrane peptide dimer in
a DMPC lipid membrane with the GROMOS96 53a6 force field
(black curve) and the GROMACS force field (gray curve). The
insets show the experimental structure (left) and a snapshot
of the MD trajectory taken at 20 000 ps from the GROMOS96
simulation (right).
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based on the Berger et al.19 model, which achieve even
higher accuracy, for example, 0.645 nm2 in a study by Patra
et al.46 or 0.655 nm2 in another recent study.56 The advantage
of the lipid model presented here is that it is fully compatible
with the recent GROMOS96 53a6 force field. Therefore, we
recommend the DPPC3 lipid model for united-atom mem-
brane protein MD simulations.

The lipid bilayer based on the DMPC model showed an
equally satisfactory reproduction of experimental parameters.

The increased area per lipid ratio of the POPC1 lipid
bilayer is most likely caused by the increased lipid bilayer
packing disorder introduced by the cis double bond in the
lipid acyl chain. The inclusion of more realistic torsion
potentials for the bonds adjacent to the double bond in
POPC2 further increases the area per lipid to 0.693 ( 0.005
nm2, which is within 1.5% of the experimental result of 0.683
nm2.57 This is the best reproduction of the area per lipid ratio
for POPC in the literature so far, to our knowledge. The all-
atom lipid models using the CHARMM force field required
constant area simulations or the application of surface
pressure,58 similar to a recent DOPC model using GAFF.17

A recent simulation of 128 POPC33 using the united-atom
parameters of Berger et al.19 achieved 0.658 nm2.

The area per lipid for the POPG1 model reaches 0.635
and 0.700 nm2 for POPG2. On the basis of the improved
agreement between simulation and experimental results of
the area per lipid for POPC2 due to the inclusion of modified
torsion potentials, POPG2, which includes the same torsion
potentials as POPC2, is chosen as the preferred model. There
are no experimental data of the area per lipid ratio for pure
POPG lipid membranes in the liquid-crystalline state avail-
able, to our knowledge. Phosphatidyl-glycerol of various
chain lengths and compositions prepared from egg lecithin
yielded an area per lipid of 0.64 nm2 using X-ray diffraction59

(extracted from Figure 1 in that publication). A DPPC/DMPG
(50:50) lipid monolayer gave a value of 0.66 nm2 from
neutron reflection data. These values most likely underesti-
mate the area per lipid of a pure POPG lipid bilayer, since
an unsaturated acyl chain is expected to increase the surface
area of a lipid molecule, as can be seen from the comparison
between DPPC and POPC. DMPG used in the monolayer
study has completely saturated acyl chains, and PG lipids
prepared from egg lecithin contain a large amout of saturated
chains. A more recent X-ray study of the negatively charged
phospholipid 1,2-dioleoyl-sn-glycero-3-phospho-L-serine in
the fluid state obtained a surface area per lipid of 0.653 nm2

in the fluid state and in the absence of osmotic pressure.60

Until further experimental data become available, the POPG2
model with a lipid surface area of 0.700 nm2 agrees more
with the experimental data mentioned above than the POPG1
model.

It is interesting to note that most other MD simulation
studies so far report much smaller area per lipid ratios for
POPG bilayers. For example, a study by Zhao et al.33 reports
a value of 0.530 nm2, and Elmore61 reports a value of 0.561
nm2. Another simulation study of a POPE/POPG (75:25)
mixture62 obtains an area per lipid ratio for POPG of 0.628
nm2 from a decomposition of the area into POPG and POPE
contributions using a Voroni tessellation method. This result

is not directly comparable to a pure POPG system, since
the POPG area is most likely influenced by the presence of
POPE. Other simulations of lipids with negatively charged
headgroups obtain a similar small area per lipid ratio; for
example, for POPS, a value of 0.55 nm2 has been found.63

The smaller lipid surface area of charged lipids in comparison
to neutral lipids is explained by the binding of counterions
that not only compensate for the electrostatic repulsion of
the negatively charged headgroups but lead to a further
condensation of the bilayer area. Of note is the deviation of
the area per lipid in our study (POPG1, 0.635 nm2) from
the previous study by Zhao et al.33 (0.530 nm2), which used
a similar POPG model with the same partial charge distribu-
tion. In the same study, Zhao et al. obtained an average area
per lipid of 0.658 nm2 for POPC, which is identical with
our result for POPC1, taking into account the error margin.
In order to rationalize these differences, further simulations
of POPG1 have been conducted, where the van der Waals
radius of the ester-carbonyl atoms has been changed from
0.664 to 0.336 nm (“CH0” to “C” atom type). The “C” atom
type has been used in the DPPC1 and DPPC2 models, which
led to an unsatisfactory reproduction of the area per lipid.
For POPG, this resulted in an average area per lipid of 0.573
( 0.004 nm2, which is similar to simulation results reported
by other groups. However, in light of available experimental
data, as discussed above, an area per lipid of 0.700 nm2 seems
more accurate. The likely reason for the larger area per lipid
in our work is the van der Waals repulsion between sodium
atoms in the lipid headgroup region and lipid atoms. There
is the possiblity that previous MD simulations of anionic
lipid bilayers underestimated the surface area per lipid,
because they did not model the space requirements of the
lipid-bound counterions adequately. Future experimental
studies of pure POPG and POPS lipid bilayers are required
in order to provide a final answer.

The new DMPC/GROMOS96 53a6 lipid model has been
compared to the Berger et al.19/GROMOS87 lipid model in
membrane protein simulations. During a 20 ns simulation,
the lipid/force field combination developed in this work
showed better performance in maintaining the experimental
structure, as revealed by the rmsd deviation. The experi-
mental conditions for ErbB2 stucture determination of
DHPC/DMPC bicelles are similar but not identical to a pure
DMPC bilayer. Therefore, deviation from the experimental
structure as a measure of force field quality has to be
considered with caution. Unfortunately, most membrane
protein structures have been obtained at conditions far
different from a liquid-crystalline lipid bilayer, for example,
from crystals in X-ray crystallography or from detergent
micelles in NMR spectroscopy.

In conclusion, united-atom lipid models for DPPC, DMPC,
POPC, and POPG have been developed that accurately
reproduce experimental data and should enable researchers
to carry out united-atom membrane protein simulations with
the latest 53a6 version of the GROMOS96 force field, thus
reducing the computational costs as compared to all-atom
force fields without sacrificing significantly the accuracy of
the simulation.
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Abstract: The replica exchange (RE) method is increasingly used to improve sampling in
molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the
united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations
show that we are able to simulate folding events that take place in a microsecond or even a
millisecond time scale. To speed up the search further, we applied the multiplexing replica
exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE
method, developed by Rhee and Pande, differs from the original RE method in that several
trajectories are run at a given temperature. Each set of trajectories run at a different temperature
constitutes a layer. Exchanges are attempted not only within a single layer but also between
layers. The code has been parallelized and scales up to 4000 processors. We present a
comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES
force-field. We demonstrate that the multiplexed procedure increases the power of replica
exchange MD considerably and convergence of the thermodynamic quantities is achieved much
faster.

1. Introduction

The dynamics of proteins and protein folding plays a
fundamental role in biological processes, such as enzymatic
reactions, signal transduction, immunological processes, and
cell motility, and also in malignant processes, such as cancer
and amyloid formation.1 Recent advancement of single-
molecule studies2 facilitates the experimental investigation
of the folding pathways of some proteins, but generally,
experimental studies of the mechanisms of protein folding
are restricted to techniques that provide only indirect and
fragmentary information, leaving a wide room to interpreta-
tion. Therefore, simulation techniques are used widely to
study the dynamics and mechanisms of protein folding. The
development of new methods of simulation of mechanisms

of protein folding and comparison of theoretical and experi-
mental characteristics of protein folding is of crucial
importance for advancing our understanding of biological
systems.

Because of the complexity of the systems, all-atom studies
of protein folding are mostly restricted to unfolding simula-
tions, starting from the experimental structure, except for
small proteins.3 However, even for small proteins, only a
few trajectories can be run, which does not make it readily
possible to compare the results with those of experiments
that provide ensemble-averaged properties. To carry out
large-scale simulations, one has to resort to reduced models
of proteins; most of such simulations are carried out with
the use of Goj-like4,5 or related6,7 potentials, which are biased
toward the native structure, or model potentials,8 which can
reproduce general features of protein folding. Small-scale
motions are also studied by using elastic-network models.9

This is because most of the existing realistic and general
coarse-grained potentials perform well (in particular, they
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can predict the native structure of a protein) when used in
connection with information extracted from protein data-
bases, which is not acceptable when studying protein
dynamics. In turn, the reason for the deficiency of the coarse-
grained potentials lies in their derivation either by analogy
to all-atom force fields or from database statistics; neither
method offers a clear way of first-principle systematic
derivation of the force field.

The coarse-grained UNRES (united-residue) force field10-15

developed in our laboratory has been derived from first
principles13 as a cluster-cumulant16 expansion of the re-
stricted free energy (or potential of mean force) of a
polypeptide chain immersed in water, where secondary
degrees of freedom have been integrated out. This approach
enabled us to introduce the essential multibody terms in a
systematic and database-independent way. The optimization
of the parameters of the force field was performed with a
novel method,17-19 which makes use of the hierarchical
structure of the protein energy landscape. The optimized
force field was applied to search for the global energy
minimum, and predicted complete structures or large portions
of structure of proteins in CASP blind test experiments
without ancillary information from protein structural data-
bases.20 Recently, we implemented the united-residue UN-
RES force field for mesoscopic molecular dynamics
(MD).21-24 Initial results from UNRES MD simulations
show that we are able to simulate folding events which take
place in a microsecond or even a millisecond time scale.

Methods such as canonical MD or Metropolis Monte Carlo
(MC) can be used for estimating thermodynamical properties,
as well as for a global search, but in practice, they easily
become trapped and thus are not effective methods for
studying rough free-energy landscapes of proteins. Efficient
conformational sampling algorithms are an essential com-
ponent of methods for studying protein structure and dynam-
ics. One of the most effective sampling methods, the replica
exchange method (RE, also known as exchange MC25 or
parallel tempering26), was initially developed to improve
sampling in glassy systems in statistical physics. However,
following Hansmann’s use of the method in simulations of
a simple peptide, Met-enkephalin26 and Sugita and Okamo-
to’s formulation of an MD version of the algorithm,27 the
RE method has been applied extensively in biomolecular
simulations.

The replica exchange MD (REMD) method combines the
idea of simulated annealing MD and MC methods and is
one of the generalized-ensemble algorithms that perform a
random walk in energy space because of a free random walk
in temperature space. In the REMD method, n replica
systems, each in the canonical ensemble and each at a
different temperature, are simulated. At given intervals,
swaps or exchanges of the configurational variables between
systems are accepted with the Metropolis criterion. This is
equivalent to exchanges of temperatures because the set of
n replica systems can be treated as the set of n continuous
MD trajectories of varying temperatures or the set of n
canonical ensembles at particular temperatures with structures
from all trajectories sorted by temperature. In this paper, we
investigate the use of UNRES in multiplexed REMD

(MREMD) introduced by Rhee and Pande.28 In MREMD,
to enhance sampling, the replicas are multiplexed with a
number of independent molecular dynamics runs at each
temperature. Exchanges of configurations between random
replicas of neighboring temperatures are tried as in REMD,
but there is a larger number of such pairs in MREMD than
in REMD. In MREMD, it can be considered that there are
several layers of replicas, each of which has all different
temperature levels and is equivalent to a single REMD
simulation. Exchanges between replicas in different layers
are tried, as well as exchanges between replicas in the same
layer.

The replica exchange method was the subject of a recent
review,29 which discussed both the history of the method
and its application to various physicochemical simulations.
The great potential of the RE method was also recognized
in a review of sampling methods for molecular simulation.30

The efficiency of replica exchange for canonical sampling
ofbiomoleculeswasquestionedbyZuckermanandLyman,31,32

but they were concerned only with canonical sampling at a
fixed temperature and did not consider that efficient confor-
mational searching is also necessary for proper canonical
sampling. Also, in an erratum,32 they agreed that RE is more
promising than suggested in their original letter. Recently,
we compared three generalized-ensemble algorithms for
molecular simulations, namely, a replica exchange method
(RE), a replica exchange multicanonical method (REMUCA),
and a replica exchange multicanonical method with replica
exchange (REMUCAREM) in both MC and MD versions,
to determine the thermodynamic characteristics of the
UNRES force field for efficient sampling at various tem-
peratures.33 Of those, the REMD method, especially in its
multiplexed version (MREMD), turned out to be the most
efficient. Despite having been shown to be very effective
on some model systems, applications of MREMD in complex
systems, such as those for the simulation of protein folding,
have not been tested in detail. Here, we present a comparison
of canonical MD, REMD, and MREMD simulations of
protein folding with the UNRES force-field.

2. Methods

UNRES Force Field. In the UNRES model,10-15 a
polypeptide chain is represented by a sequence of R-carbon
(CR) atoms linked by virtual bonds with attached united side
chains (SC) and united peptide groups (p). Each united
peptide group is located in the middle between two consecu-
tive R-carbons. Only these united peptide groups and the
united side chains serve as interaction sites, the R-carbons
serving only to define the chain geometry. Comparison of
all-atom and UNRES models of polypeptide chain is shown
in Figure 1.

The UNRES force field has been derived as a restricted
free energy (RFE) function of an all-atom polypeptide chain
plus the surrounding solvent, where the all-atom energy
function is averaged over the degrees of freedom that are
lost when passing from the all-atom to the simplified
system.12,13 The RFE is further decomposed into factors
coming from interactions within and between a given number
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of united interaction sites.13 Expansion of the factors into
generalized Kubo cumulants16 enables us to derive ap-
proximate analytical expressions for the respective terms,12,13

including the multibody or correlation terms, which are
derived in other force fields from structural databases or on
a heuristic basis.34

The energy of the virtual-bond chain is expressed by
eq 1.
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USCiSCj
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i*j
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The term USCiSCj
represents the mean free energy of the

hydrophobic (hydrophilic) interactions between the side
chains, which implicitly contains the contributions from the
interactions of the side chain with the solvent. The term USCipj

denotes the excluded-volume potential of the side-chain-
peptide-group interactions. The peptide-group interaction
potential is split into two parts: the Lennard-Jones interaction
energy between peptide-group centers (Upipj

VDW) and the
average electrostatic energy between peptide-group dipoles
(Upipj

el ); the second of these terms accounts for the tendency
to form backbone hydrogen bonds between peptide groups
pi and pj. The terms Utor, Utord, Ub, and Urot are the virtual-
bond-dihedral angle torsional terms, virtual-bond-dihedral
angle double-torsional terms, virtual-bond angle bending
terms, and side-chain rotamer terms, respectively; these terms
account for the local propensities of the polypeptide chain.
The terms Ucorr

(m) represent correlation or multibody contribu-
tions from the coupling between backbone-local and backbone-
electrostatic interactions. The multibody terms are indis-
pensable for reproduction of regular R-helical and �-sheet
structures. The terms Ubond(di), where di is the length of the
ith virtual bond and nbond is the number of virtual bonds,
are simple harmonic potentials of virtual-bond distortion,22

and the terms USS describe the energetics of disulfide
bonds.35,36 The w’s are the weights of the energy terms, and

they were determined (together with the parameters within
each cumulant term and the well depths of the side-chain
pairwise interaction potential USCiSCj

) by hierarchical opti-
mization19 of the potential-energy function. In this work, we
used the version of the UNRES force field referred to as
4P,19 which was parametrized in our earlier work19 simul-
taneously on the training proteins 1GAB (R), 1E0L (�), 1E0G
(R+�), and 1IGD (R+�), using the conformational space
annealing (CSA) method37 to generate the decoy sets.
Although the 4P force field was parametrized to find the
native structures of proteins as global minima of the potential
energy, it performs quite well in folding proteins in molecular
dynamics simulations.21 On the other hand, because the
optimization procedure was focused on producing as large
an energy gradient with increasing native-likeness as pos-
sible,17 the folding temperatures turned out to be unphysically
high21,23 and the heat capacity curves contain multiple
peaks,33 reflecting the fact that formation of small structural
elements such as individual R-helices precedes packing into
tertiary structure. This also means that the 4P UNRES force
field produces rough energy landscapes, but such a feature
is useful for performing a hard test of a conformational-
search method. We note at this point that, in our recent
work,38 we have reported preliminary versions of the UNRES
force field parametrized for canonical simulations.

Replica-Exchange Algorithm. In the REMD method,27

M canonical MD simulations are carried out simultaneously,
each one at a different temperature. Initially the temperatures
increase with the sequential number of the simulation
(trajectory). After every m steps, an exchange of temperatures
between neighboring trajectories (j ) i + 1) is attempted,
the decision about the exchange being made based on the
Metropolis criterion, which is expressed by eq 2

∆) (�j - �i)[U(Xj)-U(Xi)] (2)

where �i ) 1/RTi, Ti being the absolute temperature cor-
responding to the ith trajectory, and Xi denotes the variables
of the UNRES conformation of the ith trajectory at the
attempted exchange point. If ∆ e 0, Ti and Tj are exchanged,
otherwise the exchange is performed with probability
exp(-∆).

The multiplexed variant of the RE method (MREMD)
developed by Rhee and Pande28 differs from the original

Figure 1. Illustration of all-atom and united-residue (UNRES) models of a polypeptide chain. In the all-atom model (left), different
atom types have different colors, the polypeptide chain is shown using thick sticks, and surrounding water molecules are shown
as thin sticks. The UNRES model (right) for a polypeptide chain has only the following centers of interaction: the united peptide
groups represented by small cyan spheres and the united side chains represented by ellipsoids with different sizes and colors
for different types of amino acids. The surrounding water is treated implicitly in the potential of mean force between these
centers of interaction.
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RE method in that several trajectories are run at a given
temperature. Each set of trajectories ran at a different
temperature constitutes a layer. Exchanges are attempted not
only within a single layer but also between layers.

The original REMD and MREMD algorithms require
synchronization every time the exchange of temperatures
between trajectories is attempted. Exchange of temperatures
is performed by the master task, and the algorithm requires
that all replicas communicate with the master task. All
replicas have to perform the same number of steps between
communications exactly. Such synchronization means that
the master task and all replicas have to wait for the slowest
replica. This deteriorates the performance of the algorithm
beyond 256 processors heavily. We eliminated synchroniza-
tion by allowing exchanges every time at which the master
task has performed a given number of steps rather than
requiring that all tasks have reached this point. Synchroniza-
tion is also eliminated in a serial replica exchange algorithm
(SREM).39 SREM eliminates not only synchronization but
also all communication/exchanges between replicas; each
replica changes temperature not by direct exchange with
neighbors but based on potential energy distributions.
Recently we have implemented SREM with UNRES.40

SREM reproduces the results of REM and is more efficient
in terms of wall-clock time and scales better on distributed-
memory machines. Unfortunately SREM can be applied only
to the temperature-independent, but not to the temperature-
dependent, UNRES force field.40 Optimizing input/output
operations is also important for parallel performance. UNRES
MREMD and canonical MD simulations can use two modes
of input/output. In the first mode, all processors read and
write all files independently: input files with all parameters
in the beginning of the run and several output files at defined
intervals. In the second mode, only the master processor
writes a text file with messages and one binary trajectory
file with conformations collected from all processors. Only
the second mode minimizes input/output operations and leads
to high efficiency on massively parallel systems without local
hard drives such as Cray XT3 or IBM BlueGene. An
additional cache array on each processor is used for storage
of calculated conformations before sending them to the
master processor, which facilitates less synchronization
between processors. The Europort Data Compression XDRF

library is used for writing compressed binary trajectory
files.41

WHAM. The weighted histogram analysis method
(WHAM)42 was used to extract maximum information from
all replicas to evaluate thermodynamic quantities at any
temperature. For a replica exchange simulation with M
replicas at M distinct temperatures, a set of M energy
histograms Nm(E) is obtained. The densities of states [n(E)]
are then obtained self-consistently from the following
WHAM equations:

n(E))
∑
m)1

M

gm
-1Nm(E)

∑
m)1

M

gm
-1nm exp(fm - �mE)

(3)

exp(-fm))∑
E

n(E) exp(-�mE) (4)

where Nm(E) is the histogram at temperature Tm, �m ) 1/(RTm)
is the inverse temperature, nm is the total number of samples in
the mth replica, gm ) 1 + 2τm, and τm is the integrated
autocorrelation time at temperature Tm. In biomolecular systems,
gm is approximately constant42 and, therefore, can be canceled
in eq 3. The WHAM eqs 3 and 4 are evaluated self-consistently,
and the resulting densities of states are used to evaluate the
expectation value of any observable A in eq 5

〈A〉T )
∑

E

A(E)n(E)exp(-�E)

∑
E

n(E)exp(-�E)
(5)

3. Results and Discussion

The native structures of two proteins investigated in this
work: the Escherichia coli Mltd Lysm domain (an R+�
protein, 48 residues, 1E0G)43 and de novo designed protein
(an R protein, 67 residues, 1LQ7)44 are shown in Figure 2.
The 1E0G protein was one of four proteins used simulta-
neously, together with three others to optimize the set of
UNRES energy parameters, designated as the 4P force
field,19 used in the present work.

Simulation of M replicas in REMD, rather than one
canonical MD trajectory, requires on the order of M times
more computational effort if each trajectory is simulated for
the same length as the single canonical MD trajectory. To
make comparison simpler, the total length of simulations
should be the same. Many shorter MD simulations appear
to be more efficient and provide more insight than a single
longer simulation with the same overall length of time.45,46

The main reason is nonergodicity of MD simulations, which
especially for a rugged energy landscape are easily trapped
in the region close to the starting conformation. Running
shorter MD simulations provides a greater chance to explore
different regions of conformational space than running a
single long simulation. This is illustrated by the comparison
of plots of energy versus rmsd from the native structure for
the 1E0G protein generated using independent canonical MD
simulations with different numbers of trajectories and the

Figure 2. Structures of 1E0G (left) and 1LQ7 (right) proteins
shown as ribbon models. Ribbons are in rainbow colors
starting from blue on the N-terminus to red on the C-terminus.
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same total length (80 mln steps) of simulations shown in
Figure 3a. Simulations at six different temperatures were
used, and scatter plots for each temperature are represented
by different colors of points. The upper left panel with only
10 trajectories (8 mln steps each) shows that each trajectory
visited only small regions of conformational space as marked
by limited changes of rmsd and energy. Canonical sampling
for this set of MD simulations did not converge because
simulations performed with lower temperature (300 K, red
points) did not visit the lowest-energy regions; the lowest
energy was achieved in simulations at intermediate tempera-
ture (350 K, orange points). It should be noted that the
important region close to the native structure, with rmsd
around 4 Å, is not visited at all in this set of simulations.
Adding more trajectories and reducing their length to keep
the total simulation-length the same improves the sampling
up to certain point. The native region around 4 Å rmsd is
visited by at least one trajectory for simulations with 20,
40, and 80 trajectories but not for 160 and 320 trajectories,
which are too short (in the 320 case, each trajectory has only
0.25 mln steps).

The MREMD simulation is more efficient than a set of
independent canonical MD simulations: for the same length
and the number of replicas (trajectories), it covers a larger

portion of conformational space, as illustrated on plots of
energy versus rmsd in Figure 3b, in comparison with Figure
3a. This improvement is especially visible for low-energy
regions: all MREMD simulations reached lower energies for
low-temperature replicas in comparison with the independent
MD simulations. The convergence of each canonical distri-
bution to proper energy regions for each temperature is much
better, as shown by the proper order of color on each plots:
lower temperature replicas always sample lower energy
regions, which was not always the case for the set of
independent MD simulations. Just as running several MD
trajectories is more efficient than one long MD trajectory,
adding more trajectories increases the effectiveness of
MREMD compared to REMD. Because the total simulation
length is constant, it is not always feasible to decrease the
necessary simulation time by simultaneously performing a
multiple number of replicas because thermodynamically
acceptable results cannot be expected within a very short
simulation time for each replica. This is especially important
for larger proteins and proteins containing � structures, which
fold more slowly.

A set of MREMD simulations with different numbers of
replicas but the same total simulation time for 1LQ7 is shown
in Figure 4. The shortest MREMD simulation (0.25 million

Figure 3. Plots of energy vs rmsd from the native structure for the 1E0G protein generated using (a) independent canonical
MD simulations with different numbers of trajectories and (b) multiplexed-replica exchange MD simulations with different numbers
of replicas. The number of trajectories (replicas) used in the simulation presented in each graph is shown in the top-left corner
of each graph. The total length of the simulation is the same for all subgraphs, that is, simulation with a larger number of trajectories
is proportionally shorter. Different colors from the rainbow spectrum represent different temperatures: red for 300 K, orange for
350 K, green for 400 K, cyan for 500 K, blue for 600 K, and magenta for 700 K.
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steps) with the largest number of replicas (320) did not visit
low energy and low rmsd regions of conformational space
at all. But an intermediate number of replicas and length of
each replica’s trajectory shows that, up to a certain point,
adding more replicas and reducing each of their lengths also
helps in this case: the region of conformational space with
rmsd around 6 Å was not visited in simulations with 10 and
20 replicas but is occupied for 40, 80, and 160 replicas.

The observation that protein folding has a series of early
conformational steps that lead to lag phases at the beginning
of the folding kinetics and limit the use of very short
simulation data was made by Fersht.47 His criticism was
directed toward the use of very short simulations in
distributed computing for calculating kinetic data, but the
presence of these lag phases is important also for MREMD
simulations. It can bias short simulations; therefore, MREMD
with many replicas but too short simulation time for each of
them can lead to a false conformational landscape and wrong
thermodynamic characteristics of folding. Convergence of
simulations should always be checked carefully by monitor-
ing convergence of sensitive thermodynamical variables such
as heat of capacity profiles.

To compare the efficiency of REMD and MREMD in
calculations of thermodynamical characteristics of protein
folding, additional simulations for 1E0G and 1LQ7 were
performed using 30 temperatures spanning the range
200-1800 K (the folding temperature of the 4P force field
is very high, around 1200 K, because this force field was
optimized using decoys generated by a global optimization
method, not by canonical sampling). The REMD simulations
were performed with one replica per temperature and 300
million steps for 1E0G and 48 million steps for 1LQ7, and
MREMD simulations were performed with multiplexing of
eight replicas per temperature with the same length of
simulation (300 million steps for 1E0G and 48 millions steps
for 1LQ7). To determine the added value of multiplexing,
for 1LQ7, we carried out eight additional REMD simulations
independent of each other at 30 temperatures each (i.e., with
the same temperatures and total number of trajectories as
the multiplexed simulation of that protein); to determine the

added value of replica exchange, we carried out two series
of 30 and 240 independent canonical MD simulations,
respectively, at the same temperatures as in REMD/MREMD
simulations with 1 or 8 trajectories per temperature, respec-
tively. Such control runs were not carried out for 1E0G
because of the slow convergence of the canonical simula-
tions. In this set of simulations, all replicas were started from
extended structures. To investigate the dependence on the
starting conditions, a second set of simulations, REMD (300
million steps for 1E0G and 48 millions steps for 1LQ7) and
MREMD with multiplexing of 8 replicas per temperature
(300 million steps for 1E0G and 48 millions steps for 1LQ7)
were performed with all replicas started from native struc-
tures. Conformations collected during simulations every 2000
steps were used in WHAM to calculate temperature profiles
of heat capacity and average rmsd from the native structure.

The convergence of the heat capacity curve with increased
simulation length, calculated for the 1E0G protein by
WHAM using consecutive windows of length 20 mln steps
for REMD and 2.5 mln steps for MREMD, is shown in
Figure 5 (the length of a window was chosen to select the
same number of conformations from both REMD and
MREMD simulations). For 1E0G, convergence is slow in
all simulations, both for REMD starting from the extended
structure (Figure 5a) and starting from the native structure
(Figure 5b) and for MREMD starting from the extended
structure (Figure 5c) and starting from the native structure
(Figure 5d). The final blue curves generated from all
simulations are similar: there is a small peak around 1250
K and a high narrow peak around 1050 K. The small peak
at higher temperature is associated with lowering of the
average rmsd for this temperature to 16 Å as shown in Figure
6, and corresponds to formation of compact structures with
local structures as R-helices. This peak converges very fast
and is present in its final position even on red curves
generated from the very short simulations. The high narrow
peak at lower temperature is associated with a fast drop of
the average rmsd at this temperature to 4 Å, as shown in
Figure 6, and corresponds to formation of native structure
with long-range antiparallel � structure. This peak converges

Figure 4. Plots of energy vs rmsd from the native structure for the 1LQ7 protein generated using multiplexed-replica exchange
MD simulations with different numbers of replicas. The number of replicas is shown in top-left corner of each graph. The total
length of the simulation is the same for all graphs. Different colors from the rainbow spectrum represent different temperatures:
red for 300 K, orange for 350 K, green for 400 K, cyan for 500 K, blue for 600 K, and magenta for 700 K.
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slowly, first appearing at lower temperatures and slowly
growing and shifting to higher temperatures. For simulations
started from extended structures (Figure 6a and c), the
average rmsd lowers to 4 Å only after long simulation. For
simulations started from the native structure (Figure 6b and
d), the average rmsd is around 4 Å for low temperatures
from the very beginning, but convergence of the average
rmsd is also slow.

To provide better insight into the convergence of ensemble
averages, in Figure 7, we plot the standard deviation of
rmsd(T) curves, σRMSDave, from the rmsd curve averaged over
the last 10 windows of the MREMD simulations started from
the experimental structure, which was taken as reference.
The quantity σRMSDave is defined by eq 6.

σRMSDave )� 1
N- 1∑i)1

N

[rmsd(Ti)- rmsdret(Ti)]
2 (6)

where rmsdref denotes the reference rmsd and N ) 2001 is
the number of temperatures; T1 ) 100 K, TN ) 2100 K. We
noted that the rmsd curves converge slower and are more
sensitive to sampling scheme than the heat-capacity curves

and, therefore, we used them to monitor convergence.
Convergence was assumed to occur when σRMSDave dropped
to 0.5 Å or below.

An analysis of the plots in Figure 7 shows that, for the
1E0G protein, MREMD simulations with multiplexing of 8
replicas per temperature do not converge 8 times faster than
a single REMD simulation. The REMD simulation started
from the extended structure converges in about 120 mln
steps, whereas MREMD needs around 150 mln steps. The
MREMD simulations started from the native structure
converge faster, in about 110 mln steps, while the REMD
simulation started from the native structure needs around 150
mln steps for convergence.

For 1E0G, the total computational expense necessary for
convergence is smaller for REMD compared with that of
MREMD simulations with multiplexing of 8 replicas per
temperature. It can be noted, however, that the σRMSDave plots
corresponding to MREMD simulations exhibit only small
and high-frequency oscillations, as compared to those of
REMD simulations which exhibit slower oscillations with
larger amplitude. These oscillations are manifested in the
rmsd curves (Figure 6a and b) as shifts of the region of the

Figure 5. Plots of heat capacity as a function of temperature for 1E0G, calculated from windows of 20 mln consecutive steps
corresponding to regular REMD starting from the extended structure (a) and from the native structure (b) and from windows of
2.5 mln steps corresponding to MREMD with multiplexing of 8 replicas per temperature starting from the extended structure (c)
and from the native structure (d). The curves in all panels are colored according to the duration of simulation; the color scale (in
million steps) is a rainbow from red (shortest) to blue (longest) shown above each panel.
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inflection point (about T ) 1000 K) with the progress of
simulations. In addition, in REMD simulations, the average

σRMSDave after convergence is about 0.5 Å for the start from
extended and 0.7 Å for the start from the native structutre.
Conversely, in both MREMD simulations the average
σRMSDave is about 0.2 Å, and the σRMSDave curves are virtually
independent of each other after achieving convergence,
exhibiting white noise behavior. This observation suggests
that MREMD results in better averaging.

The convergence of the heat capacity curve with increased
simulation length, calculated for 1LQ7 protein by WHAM,
using consecutive windows of length 4 mln steps for REMD
and 0.5 mln steps for MREMD, is shown in Figure 8. For
1LQ7, the convergence is fast for all simulations [i.e., (i)
REMD started from the extended structure (Figure 8a) and
(ii) started from the native structure (Figure 8b), (iii)
MREMD started from the extended structure (Figure 8c) and
(iv) started from the native structure (Figure 8d), (v) a series
of 30 independent canonical MD simulations at temperatures
of REMD simulations (Figure 8e), (vi) a series of 240
independent canonical MD simulations carried out at the
temperatures of the MREMD simulation (8 trajectories per
temperature) (Figure 8f), and (vii) a series of 8 independent
REMD simulations (Figure 8g)]. The final blue curves
generated from all simulations are similar with one wide peak
around 1150 K. It can be noted that the heat-capacity curves

Figure 6. Convergence of the ensemble-averaged rmsd as a function of temperature for 1E0G, calculated from windows of 20
mln consecutive steps corresponding to regular REMD starting from the extended structure (a) and from the native structure (b)
and from windows of 2.5 mln steps corresponding to MREMD with multiplexing of 8 replicas per temperature starting from the
extended structure (c) and from the native structure (d). The curves in all panels are colored according to the duration of simulation;
the color scale (in million steps) is a rainbow from red (shortest) to blue (longest) shown above each panel.

Figure 7. Plots of standard deviation of rmsd(T) curves,
σRMSDave, from the rmsd curve averaged over the last 10 windows
of the MREMD simulations started from the experimental
structure, which was taken as reference, for 1E0G regular REMD
simulation starting from the extended structure (red) and from
the native structure (green); MREMD with multiplexing of 8
replicas per temperature starting from the extended structure
(blue) and from the native structure (magenta)
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Figure 8. Plots of heat capacity as a function of temperature for 1LQ7, calculated from windows of 4 mln consecutive
steps corresponding to regular REMD starting from the extended structure (a) and from the native structure (b), from
windows of 0.5 mln steps corresponding to MREMD with multiplexing of 8 replicas per temperature starting from the extended
structure (c) and from the native structure (d), from windows of 4mln steps from a series of 30 independent canonical MD
simulations at temperatures of REMD simulations (e), from windows of 0.5 mln steps from a series of 240 independent
canonical MD simulations carried out at the temperatures of the MREMD simulation (8 trajectories per temperature) (f),
and a series of 8 independent REMD simulations (g). The curves in all panels are colored according to the duration of
simulation; the color scale (in million steps) is a rainbow from red (shortest) to blue (longest) shown above each panel.
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Figure 9. Convergence of the ensemble-averaged rmsd as a function of temperature for 1LQ7, calculated from windows
of 4 mln consecutive steps corresponding to regular REMD starting from the extended structure (a) and from the native
structure (b), from windows of 0.5 mln steps corresponding to MREMD with multiplexing of 8 replicas per temperature
starting from the extended structure (c) and from the native structure (d), from windows of 4mln steps from a series of 30
independent canonical MD simulations at temperatures of REMD simulations (e), from windows of 0.5 mln steps from a
series of 240 independent canonical MD simulations carried out at the temperatures of the MREMD simulation (8 trajectories
per temperature) (f), and from a series of 8 independent REMD simulations (g). The curves in all panels are colored according
to the duration of simulation; the color scale (in million steps) is a rainbow from red (shortest) to blue (longest) shown
above each panel.
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obtained from canonical MD simulations (Figure 8e and f)
have many secondary peaks at low temperatures, which do
not occur for REMD or MREMD simulations. This feature
of canonical simulations results from nonergodicity of the
system studied at low temperatures.

The ensemble-averaged rmsd curves for the 1LQ7 protein
calculated for increasing simulation length, are shown in
Figure 9 and the plots of σRMSDave are shown in Figure 10;
as for 1E0G, the reference rmsd curve was calculated by
averaging over 10 last windows of the MREMD simulation
started from the experimental structure. For the 1LQ7 protein,
UNRES generates two low-energy structures: a native-like
structure with rmsd around 2 Å and a “mirror image”
structure with rmsd around 9 Å. The temperature profile of
the average rmsd depends on the balance of the free energies
between these two minima as a function of temperature. For
temperatures lower than 300 K, the native-like structures are
more probable, while for temperatures between 300 and 1100
K, the “mirror image” structures with rmsd around 9 Å win.
For the 1LQ7 protein, MREMD simulations with multiplex-
ing of 8 replicas per temperature, the initial drop of σRMSDave

is faster, which is best illustrated in Figure 10 by the relative
shift of the REMD curve (red) with respect to the MREMD
curve (blue) and of the REMD from the native start curve
(green) with respect to the curve corresponding to the
MREMD simulation started from the experimental structure
(magenta) to the right. Both REMD and MREMD simula-
tions, started from the extended structure, converge in about
15 mln steps. Simulations started from the native structure
converge in about 10 mln steps. However, as for 1E0G, the
σRMSDave curves corresponding to REMD simulations exhibit

slow large-amplitude oscillations (with period of about 38
mln MD steps, which largely exceeds the time-window size
which is 4 mln steps for REMD simulations) after conver-
gence, while those corresponding to MREMD simulations
exhibit white-noise behavior after convergence, which in-
dicates better averaging in MREMD compared to REMD
simulations.

It can also be noted that performing 8 independent REMD
simulations is not equivalent to performing a single 8-plexed
REMD simulation. The heat-capacity (Figure 8g) and
ensemble-averaged rmsd (Figure 9g) curves corresponding
to 8 independent REMD simulations are much more diffuse
than those of the 8-plexed REMD simulation (Figure 8c and
9c). This is also manifested in the σRMSDave curve (the black
line in Figure 10) corresponding to 8 independent REMD
simulations which has a higher average σRMSDave value (about
1 Å) after the initial drop compared to that of both MREMD
simulations (about 0.2 Å), and although, at the first glance,
it exhibits a random-noise hehavior in the later part, the fast
random oscillations are superposed on slow large-period
oscillations. It can, therefore, be concluded that the added
value of multiplexing is improved averaging even compared
to the equivalent number of REMD simulations.

The rmsd curves obtained in canonical MD simulations
indicate that the system does not contain a dominant amount
of native structure even at low temperature (Figure 9e and
f). This is also manifested in the corresponding σRMSDave

curves (Figure 10), which are always above those cor-
responding to curves calculated from REMD or MREMD
simulations. This observation clearly shows that canonical
MD is not suitable to derive thermodynamic properties of
systems which are not ergodic at all temperatures.

The improvement of ergodicity in REMD and MREMD
simulations compared to canonical MD simulations carried
out at the same temperatures can also be assessed by
comparing the mean first passage times (MFPTs), where
MFPT is defined as the average time (averaged over all
trajectories) in which the native-like structure appears for
the first time. For 1LQ7, we identified the appearance of a
native-like structure with rmsd drop below 5 Å. For
trajectories in which no native-like structures appear, the total
trajectory time contributed to the average. The MFPTs and
the number of trajectories which did not reach native-like
(NONF) structures are as follows for the respective simula-
tions: (i) MFPT ) 175 ns and NONF ) 20 for 30
independent MD simulations compared to (ii) MFPT ) 42
ns and NONF ) 1 for the corresponding REMD simulation;
(iii) MFPT ) 173 ns and NONF ) 175 for 240 independent
MD simulations at 30 temperatures with 8 trajectories per
temperature compared to (iv) MFPT ) 47 ns and NONF )
0 and MFPT ) 49 ns and NONF ) 3 for the 8 independent
REMD simulations and the 8-plexed REMD simulation,
respectively. The total simulation length was about 235 ns.
These data clearly show that replica exchange leads to at
least 4 times faster convergence to the native structure (which
is the most probable one at low temperatures for 1LQ7 with
the 4P force field used in this work). There is no appreciable
difference in MFPT between REMD, 8-plexed REMD, and
8 independent REMD simulations. We must note at this point

Figure 10. Plots of standard deviation of rmsd(T) curves,
σRMSDave, from the rmsd curve averaged over the last 10
windows of the MREMD simulations started from the experi-
mental structure, which was taken as reference, for 1LQ7
regular REMD simulation starting from the extended structure
(red line) and from the native structure (green line), MREMD
with multiplexing of 8 replicas per temperature starting from
the extended structure (blue line) and from the native structure
(magenta line), and for a series of 30 independent canonical
MD simulations at temperatures of REMD simulations (dashed
red line), a series of 240 independent canonical MD simula-
tions carried out at the temperatures of the MREMD simulation
(8 trajectories per temperature) (dashed blue line), and a
series of 8 independent REMD simulations (black line).
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that the computed MFPTs do not have any values for folding
kinetics because they correspond to all temperatures used in
our simulations; they can be considered only as the ability
of the system studied to reach the native structure given a
simulation protocol.

Even if the total computational expense in the above
simulations is the same for REMD and MREMD, MREMD
finishes the simulations faster in real time by effectively using
more processors for more replicas. This is especially attrac-
tive for UNRES simulations. For all-atom explicit solvent
simulations, the large number of replicas that must be used
to span a designated temperature range and the subsequent
long time required for conformations sampled at high
temperature to exchange for potential inclusion within the

low temperature regime are seen as the main difficulties that
are inherent in a REMD application. The large number of
replicas is not a problem for united-residue (UNRES)
simulations because the number of replicas scales as the
number of degrees of freedom of the system and is several
orders of magnitude smaller for UNRES when compared
with all-atom simulations with explicit solvent.

MREMD simulations are more efficient than regular
REMD simulations with the same number of replicas (each
with a different temperature) because very closely spaced
temperature exchanges must be made much more often for
REMD. This difference between REMD and MREMD is
illustrated in Figure 11, showing a comparison of diffusion
in temperature replica space of REMD and MREMD in terms

Figure 11. Diffusion in temperature replica space of REMD vs MREMD: combined plots of temperature as a function of time
for all replicas for (a) REMD with 30 temperatures, (b) MREMD with 30 temperatures and multiplexing of 8 replicas per temperature,
for a total of 240 replicas, (c) REMD with 240 temperatures, and (d) REMD with 240 temperatures and 10 times more frequent
exchanges between replicas.

Figure 12. Scalability of the UNRES MREMD code. The left panel shows speed up curves calculated for MREMD using an
AphaServer supercomputer with all replicas running for the same number of steps between exchanges (dashed line) and an
improved code with no synchronization and exchange based only on the number of steps performed by the first replica (solid
line). The dotted line shows perfect 100% speed up. The right panel shows speed up curves calculated for MREMD with no
synchronization using a Cray XT3 computer (solid line) and IBM BlueGene (dashed line) supercomputers. Two dotted lines
show 75% and 100% speedup lines for reference.
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of temperature as a function of time for all replicas. REMD
with 30 temperatures (Figure 11a) and MREMD with 30
temperatures and multiplexing of 8 replicas per temperature
(Figure 11b) show good walks in temperature space, whereas
for REMD with 240 temperatures (Figure 11c), each replica
does not change its temperature very much from the starting
one, and a clear monotonical pattern is visible even at the
end of the simulations. By increasing the frequency of
exchange 10 times for REMD with 240 temperatures (Figure
11d), we can obtain a proper random walk in temperature
space, which is essential for REMD performance. The high
frequency of exchange does not allow proper equilibration
between exchanges and reduces parallel performance. There-
fore, it is not practical to run REMD with so many replicas.
MREMD does not involve these problems and can be used
effectively even with thousands of replicas.

Parallel performance of the original REMD and MREMD
code was limited by synchronization between all replicas
on every exchange. As shown in Figure 12, this limitation
restricts speedup for larger numbers of processors. When the
restriction to perform exactly the same number of steps
between exchanges for all replicas is lifted, and the exchange
step is based only on the number of steps performed by the
first replica, the improved algorithm scales almost linearly
up to 4000 processors with over 75% speed up. In the
improved algorithm, the exchanges of conformations between
random replicas with neighboring temperatures are tried, not
at the same number of MD steps for each replica but are
forced by the replica with the lowest temperature, indepen-
dent of the number of steps performed by the other replicas.
With not too frequent exchanges, this algorithm allows for
enough equilibration for each replica between exchanges.
With processors of equal or closely spaced speed, the number
of steps performed by each replica between exchanges does
not vary too much, but even small variations remove waiting,
which would reduce parallel performance very fast.

4. Conclusion

Replica exchange is the method of choice for studies of the
thermodynamics of protein folding. Various thermodynami-
cal properties are available as a function of temperature
through histogram reweighting techniques (WHAM). Low
free-energy minima are accessible through accelerated
relaxation. Intrinsic parallelism of the algorithm can be
extended effectively by multiplexing. Comparison of REMD
versus MREMD shows that efficient sampling requires
diffusion in temperature replica space; adding more tem-
perature replicas means that the number of swaps grows
quadratically and that either longer simulations are needed
or exchanges must be attempted more frequently. The
MREMD method takes advantage of both the multiple
temperature aspect of REMD, as well as the large number
of independent simulations to enhance sampling consider-
ably. The simulation time should be long enough so that each
trajectory can cover the entire conformational space, as well
as the entire temperature space. Parallelization of the
MREMD method has been enhanced by removing the
synchronization step. Removing the restriction to perform
exactly the same number of steps between exchanges has

no consequence for the validity of the results in simulations
performed using processors of equal or closely spaced speed
because the number of steps performed by each replica
between exchanges does not vary too much. These changes
in the algorithm allow much better parallel performance. The
improved algorithm scales almost linearly up to 4000
processors with over 75% of ideal speed up [i.e., (4000)(0.75)
) 3000 time speed up].
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References

(1) Dobson, C. M. Nature 2003, 426 (6968), 884–890.

(2) Cecconi, C.; Shank, E. A.; Bustamante, C.; Marqusee, S.
Science 2005, 309 (5743), 2057–2060.

(3) Scheraga, H. A.; Khalili, M.; Liwo, A. Annu. ReV. Phys.
Chem. 2007, 58, 57–83.

(4) Ueda, Y.; Taketomi, H.; Go, N. Biopolymers 1978, 6, 1531–
1548.

(5) Cieplak, M.; Hoang, T. X.; Robbins, M. O. Protein Struct.
Funct. Genet. 2002, 1, 104–113.

(6) Brown, S.; Fawzi, N. J.; Head-Gordon, T. Proc. Natl. Acad.
Sci. U. S. A. 2003, 19, 10712–10717.

(7) Brown, S.; Head-Gordon, T. Protein Sci. 2004, 4, 958–970.

(8) Thirumalai, D.; Klimov, D. K. Curr. Opin. Struct. Biol. 1999,
2, 197–207.

(9) Ming, D. M.; Bruschweiler, R. Biophys. J. 2006, 10, 3382–
3388.

(10) Liwo, A.; Oldziej, S.; Pincus, M. R.; Wawak, R. J.; Rack-
ovsky, S.; Scheraga, H. A. J. Comput. Chem. 1997, 7, 849–
873.

(11) Liwo, A.; Pincus, M. R.; Wawak, R. J.; Rackovsky, S.;
Oldziej, S.; Scheraga, H. A. J. Comput. Chem. 1997, 7, 874–
887.

(12) Liwo, A.; Kazmierkiewicz, R.; Czaplewski, C.; Groth, M.;
Oldziej, S.; Wawak, R. J.; Rackovsky, S.; Pincus, M. R.;
Scheraga, H. A. J. Comput. Chem. 1998, 3, 259–276.

(13) Liwo, A.; Czaplewski, C.; Pillardy, J.; Scheraga, H. A.
J. Chem. Phys. 2001, 5, 2323–2347.

(14) Liwo, A.; Oldziej, S.; Czaplewski, C.; Kozlowska, U.;
Scheraga, H. A. J. Phys. Chem. B 2004, 27, 9421–9438.

(15) Oldziej, S.; Kozlowska, U.; Liwo, A.; Scheraga, H. A. J. Phys.
Chem. A 2003, 40, 8035–8046.

(16) Kubo, R. J. Phys. Soc. Jpn. 1962, 17, 1100–1120.

(17) Liwo, A.; Arlukowicz, P.; Czaplewski, C.; Oldziej, S.; Pillardy,
J.; Scheraga, H. A. Proc. Natl. Acad. Sci. U. S. A. 2002, 4,
1937–1942.

Multiplexed Replica Exchange Molecular Dynamics J. Chem. Theory Comput., Vol. 5, No. 3, 2009 639



(18) Oldziej, S.; Liwo, A.; Czaplewski, C.; Pillardy, J.; Scheraga,
H. A. J. Phys. Chem. B 2004, 43, 16934–16949.

(19) Oldziej, S.; Lagiewka, J.; Liwo, A.; Czaplewski, C.; Chinchio,
M.; Nanias, M.; Scheraga, H. A. J. Phys. Chem. B 2004, 43,
16950–16959.

(20) Oldziej, S.; Czaplewski, C.; Liwo, A.; Chinchio, M.; Nanias,
M.; Vila, J. A.; Khalili, M.; Arnautova, Y. A.; Jagielska, A.;
Makowski, M.; Schafroth, H. D.; Kazmierkiewicz, R.; Ripoll,
D. R.; Pillardy, J.; Saunders, J. A.; Kang, Y. K.; Gibson, K. D.;
Scheraga, H. A. Proc. Natl. Acad. Sci. U. S. A. 2005, 21,
7547–7552.

(21) Liwo, A.; Khalili, M.; Scheraga, H. A. Proc. Natl. Acad.
Sci. U. S. A. 2005, 7, 2362–2367.

(22) Khalili, M.; Liwo, A.; Rakowski, F.; Grochowski, P.; Scher-
aga, H. A. J. Phys. Chem. B 2005, 28, 13785–13797.

(23) Khalili, M.; Liwo, A.; Jagielska, A.; Scheraga, H. A. J. Phys.
Chem. B 2005, 28, 13798–13810.

(24) Khalili, M.; Liwo, A.; Scheraga, H. A. J. Mol. Biol. 2006, 3,
536–547.

(25) Hukushima, K.; Nemoto, K. J. Phys. Soc. Jpn. 1996, 6, 1604–
1608.

(26) Hansmann, U. H. E. Chem. Phys. Lett. 1997, 1-3, 140–
150.

(27) Sugita, Y.; Okamoto, Y. Chem. Phys. Lett. 1999, 1-2, 141–
151.

(28) Rhee, Y. M.; Pande, V. S. Biophys. J. 2003, 2, 775–786.

(29) Earl, D. J.; Deem, M. W. Phys. Chem. Chem. Phys. 2005,
23, 3910–3916.

(30) Lei, H. X.; Duan, Y. Curr. Opin. Struct. Biol. 2007, 2, 187–
191.

(31) Zuckerman, D. M.; Lyman, E. J. Chem. Theor. Comput.
2006, 2, 1200–1202.

(32) Zuckerman, D. M.; Lyman, E. J. Chem. Theor. Comput.
2006, 2, 1693–1693.

(33) Nanias, M.; Czaplewski, C.; Scheraga, H. A. J. Chem. Theor.
Comput. 2006, 3, 513–528.

(34) Kolinski, A.; Skolnick, J. J. Chem. Phys. 1992, 12, 9412–
9426.

(35) Czaplewski, C.; Oldziej, S.; Liwo, A.; Scheraga, H. A. Protein
Eng., Des. Sel. 2004, 1, 29–36.

(36) Chinchio, M.; Czaplewski, C.; Liwo, A.; Oldziej, S.; Scheraga,
H. A. J. Chem. Theor. Comput. 2007, 4, 1236–1248.

(37) Lee, J.; Scheraga, H. A.; Rackovsky, S. J. Comput. Chem.
1997, 9, 1222–1232.

(38) Liwo, A.; Khalili, M.; Czaplewski, C.; Kalinowski, S.; Oldziej,
S.; Wachucik, K.; Scheraga, H. A. J. Phys. Chem. B 2007,
1, 260–285.

(39) Hagen, M.; Kim, B.; Liu, P.; Friesner, R. A.; Berne, B. J. J.
Phys. Chem. B 2007, 6, 1416–1423.

(40) Shen, H.; Czaplewski, C.; Liwo, A.; Scheraga, H. A. J. Chem.
Theory Comput. 2008, 8, 1386–1400.

(41) Green, D.; Meacham, K.; Hoesel, F.v. In Parallelisation of
the Molecular Dynamics Code GROMOS87 for Distributed
Memory Parallel Architectures; HPCN Europe 1995: Pro-
ceedings of the International Conference and Exhibition on
High-Performance Computing and Networking; Springer-
Verlag: London, 1995; pp 875-879.

(42) Kumar, S.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A.;
Rosenberg, J. M. J. Comput. Chem. 1992, 8, 1011–1021.

(43) Bateman, A.; Bycroft, M. J. Mol. Biol. 2000, 4, 1113–1119.

(44) Dai, Q. H.; Tommos, C.; Fuentes, E. J.; Blomberg, M. R. A.;
Dutton, P. L.; Wand, A. J. J. Am. Chem. Soc. 2002, 37,
10952–10953.

(45) Daggett, V. Curr. Opin. Struct. Biol. 2000, 2, 160–164.

(46) Day, R.; Daggett, V. Proc. Natl. Acad. Sci. U. S. A. 2005,
38, 13445–13450.

(47) Fersht, A. R. Proc. Natl. Acad. Sci. U. S. A. 2002, 22,
14122–14125.

CT800397Z

640 J. Chem. Theory Comput., Vol. 5, No. 3, 2009 Czaplewski et al.



Graph Measures Reveal Fine Structure of Complexes
Forming in Multiparticle Simulations

Florian Lauck,‡ Volkhard Helms,* and Tihamér Geyer*

Zentrum für Bioinformatik, UniVersität des Saarlandes,
D-66041 Saarbrücken, Germany

Received September 23, 2008

Abstract: Modern simulation techniques are beginning to be used to study the dynamic
assembly and disassembly of multiprotein systems. In these many-particle simulations it can
be very tedious to monitor the formation of specific structures such as fully assembled protein
complexes or virus capsids above a background of monomers and partial complexes. However,
such analyses can be performed conveniently when the spatial configuration is mapped onto a
dynamically updated interaction graph. On the example of Monte Carlo simulations of spherical
particles with either isotropic or directed mutual attractions, we demonstrate that this combined
strategy allows for an efficient and also detailed analysis of complex formation in many-particle
systems.

Introduction

Proteins are the main building blocks and functional units
of biological cells and are involved in signal transduction,
energy metabolism, immune response, and the processing
of DNA and RNA. Interestingly, many individual proteins
do not work independent of each other. About half of them
form protein complexes that consist of two or more proteins,
which can be either identical or different in size, shape, and
function.1,2 Thus, a chain of metabolic reactions catalyzed
by the components of a multienzyme complex can be
executed in a shorter time, because intermediate substrates
need not to diffuse through the cell. They will simply be
handed over from one enzyme to the next one.3,4 Another
functional advantage of organizing single proteins into
complexes is their modularity. A certain subunit can be used
within more than one complex to accomplish the same
task.2,5

In the past, the formation of protein complexes was first
studied on a microscopic level, where the details of the
binding interfaces of the proteins were investigated experi-
mentally by X-ray crystallography, chemical shift mapping,
or site-directed mutagenesis or theoretically with docking

algorithms at atomic resolution.6,7 For the modeling of larger
protein assemblies, combinatorial methods have been de-
veloped, which can efficiently find the best configuration built
from a number of building blocks.8 Parallel to these static
docking approaches, explicitly time-dependent simulations
were used to investigate complex formation. These range
from atomistic Brownian dynamics simulations of the
association of two small proteins 9-12 up to coarse-grained
simulations of protein pairs with reaction patches13 or of virus
capsids.14,15 The largest system assembled sofar by simula-
tion techniques is the nuclear pore complex consisting of
456 protein units in yeast.16 While it is not a problem to
interpret the results of simulations with only two or three
particles, it can become a tedious and computationally
demanding task to monitor, whether and when complexes
with tens to hundreds of constituents are formed correctly.
This problem becomes even more pronounced when more
realistic simulations of large numbers of different proteins
are considered, where more than one complete complex can
be formed or where the complete complex is in a dynamic
equilibrium with its components. In such a simulation, partial
complexes of various sizes may be found together with
complete ones and even with complexes which are assembled
incorrectly.17

Recently, large databases have become available that
provide convenient access to experimental and computa-
tionally generated data sets on protein-protein interactions

* Corresponding author e-mail: volkhard.helms@bioinformatik.uni-
saarland.de; tihamer.geyer@bioinformatik.uni-saarland.de.

‡ Current address: Department of Biopharmaceutical Sciences,
University of California, San Francisco, CA 94143.

J. Chem. Theory Comput. 2009, 5, 641–648 641

10.1021/ct800396v CCC: $40.75  2009 American Chemical Society
Published on Web 02/04/2009



(PPI).18,19 By neglecting the atomistic details of the com-
ponents, protein interaction networks are being generated
from this data which then can be analyzed with graph
algorithms and statistical methods developed for networks.20,21

In these networks, each protein type typically denotes one
node (or vertex), and a known interaction between two
proteins is a link. Thus, it is relatively easy to identify a
specific pattern corresponding to a certain multiprotein
complex. For situations such as the one described above,
where one wants to identify a few target complexes in a sea
of monomers and partially assembled intermediates, we will
show that this task can be conveniently performed by
mapping the spatial simulation onto a protein interaction
graph and subsequent analysis by well-known efficient tools.
This protein interaction network built from the simulation
differs from the usual PPI networks, however, because each
of its nodes now denotes an individual copy of a protein
type. Additionally, the graph is generated dynamically. This
means that links appear and disappear over time, as the
proteins bind and unbind from each other during the spatial
simulation.

Similar considerations arise when, for example, the
formation of van der Waals clusters is studied. Here, the
objective may be to identify specific “magic” configura-
tions or deviations thereof.22,23 These magic configurations
are characterized by their high degree of symmetry, which
in turn leads to easily identifiable patterns in the interaction
network.

Here we aim to demonstrate the advantages of combining
these two views on particle interactions: the spatial view from
the simulation and the network view via the associated graph.
For this, a toy system of spherical particles with either
isotropic or directed interactions was simulated with a
standard Monte-Carlo algorithm and concurrently mapped
onto a graph which reflects the current interactions between
the particles. To avoid that complexes are essentially fixed
in space, the graph was also used to identify the next
neighbors of a displaced particle, which are then also
displaced by a fraction of this move. This idea can even be
taken further so that each complex is treated as one rigid
pseudoparticle. This in turn would allow reduction of the
number of particles in the simulation and thus speed it up
significantly.

Methods

Spatial Simulation. The spatial simulation uses a standard
Metropolis Monte-Carlo (MC) approach to model the dif-
fusion of the particles in a stochastic manner. In the canonical
NVT ensemble the probability pj for a specific state j of the
system is

pj )
e-�Ej

Z
(1)

with the energy Ej of this state, the thermal energy �-1 )
kBT with the Boltzmann constant kB and the temperature T,
and the partition function Z ) ∑ e-�Ej. We used a rejection
sampling algorithm which creates a new state j+1 of
the system with the new energy Ej+1 by displacing one of
the particles at a time. In the Metropolis MC scheme, the

transition probability into j+1 is defined as a ) pj+1/pj which
can also be written as

a) e-�(Ej+1-Ej) (2)

by inserting eq 1. In the following sections, energies are given
in units of the thermal energy kBT, and lengths are given in
dimensionless arbitrary units (a.u.).

Interactions and Bonds. Without external forces, the total
energyof thesimulatedsystemis thesumofallparticle-particle
interactions. The interaction energy VW (W for well) between
two isotropic spheres of radius σ and center-center distance
r was modeled by a repulsive core and an attractive well
potential of width rC - σ and depth ε:

VW(rij)) { (100+ 500
σ
rij

)kBT if rije σ

-ε if σ < rije rC

0 if rij > rC

(3)

In the examples presented here, the particles had a diameter
of σ ) 6 a.u. and rC ) 7 a.u. In simulations performed with
this interaction, a link between particles i and j was added
when rij<rC.

To model attractive ring patches, the well potential VW

was multiplied with an angle-dependent term as in Wilber
et al.:24

Gij(rij, θij)) exp[ (θij - ν)

2σPW
2 ] (4)

Here, θij denotes the angle between the interparticle vector
rij and the vector Ωi describing the orientation of particle i.
ν is the opening angle of the ring, i.e., the angle between Ωi

and the ring, while σPW describes the angular patch width.
In this case, the pairwise potential VR(rij) between two
particles i and j was defined as

VR(rij))VW(rij) × Gij(rij, θij) × Gji(rji, θji) (5)

In simulations using this ring potential, a link was added in
the graph for VR(rij) < 0.4kBT.

Network Measures. The number of individual interactions
shorter than rC equals the number of links in the graph and
can be derived from both the spatial and the graph domain.
For point particles, the theoretical maximal number of
interactions between N particles is N(N - 1)/2, because
interactions are bidirectional and self-interactions are ex-
cluded. For particles with nonzero radius that may not
overlap, as were used here, the maximal number of interac-
tions is smaller.

A connected component of an undirected graph is a set of
vertices that are all reachable from each other. This means
that two vertices are in the same connected component if
and only if there exists a path between them. The connected
components distribution or complex size distribution shows
how many complexes of a certain size exist in a graph. The
degree distribution P(k) gives the probability that a selected
vertex has exactly k links. It is defined as:

P(k)) N(k)
N

(6)
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where N(k) is the number of vertices having degree k, and
N is the total number of vertices in the graph. The clustering
coefficient Cki

of a node i is a measure for the connectivity
in the neighborhood of i. It is calculated from the number
of links that interconnect the neighbors of i, ni, and the degree
of i, ki:

Cki
)

2ni

ki(ki - 1)
(7)

The function C(k) is defined as the average clustering
coefficient of all nodes with degree k. The distance distribu-
tion D(l) gives the number of shortest paths25 of a certain
length l.

An overview over commonly used network measures can
be found, for example, in a review by Costa et al.26 The
network analysis of the spatial simulations was implemented
using the boost graph library.27

Simulation Setup. The simulation runs modeled the
particle diffusion in a cubic box with periodic boundary
conditions. During initialization, each particle was assigned
a random position and a random orientation. During one MC
iteration, a trial move was generated for one particle after
the other, and it was checked whether the new state of the
system should be accepted. If the new move was accepted
and interactions changed relative to the previous configura-
tion, the interaction graph was updated correspondingly.
After all particles had the chance to move once, the
interaction graph was analyzed with respect to the properties
of the complete graph such as the total number of links or
its average connectivity. These measures were used to
monitor the convergence of the simulation. Moreover, the
connected components were determined, which were indi-
vidually analyzed for their size and connectivity in a second
step. At that time, we also searched for specific patterns
which allow identification of, for example, completely
assembled icosahedra. Additionally, conventional properties
of the simulation were determined as its total energy or the
radius of gyration.

Results and Discussion

As introduced before, this study aims at introducing a new
way of studying particle interactions in a spatial simulation.
The particle simulations themselves are standard MC simula-
tions, and the graph analysis is done by well-established
mathematical graph algorithms. The novel aspect introduced
in this study is the dynamic updating and subsequent analysis
of the interaction graph.

Spherical Particles. A first impression about the monitor-
ing of association processes by graph measures will be given
on the example of simulations with 200 particles that used
a spherically symmetric attractive well potential of different
depths ε ) 0...-4kBT. The simulation box had a volume of
(70 a.u.)3 with periodic boundary conditions.

Commonly, the convergence of simulations is monitored
by the time course of the total energy of the system. Here
the energy was found to converge exponentially, as com-
plexes formed from the initially randomly distributed par-
ticles. Figure 1a shows the equilibrium value of this real

space measure vs the well depth ε (filled triangles). As
expected, for ε < 1kBT, the total energy was only slightly
smaller than zero, meaning that only a few particles were
bound by the weak attractive potential. Around ε ) 1kBT,
the total energy strongly decreased, indicating a transition
from independent particles to a large cluster. This transition
into a single large cluster is also clearly visible in the
behavior of the radius of gyration. For small ε, its value
corresponds to independent particles distributed over the
volume of the simulation box. For ε > 2kBT its value of
≈5σ indicates a densely packed cluster which essentially
does not get any denser once ε is large enough.

Of course, the graph measures derived from the interaction
graph describe the same behavior; it is the very same set of
simulations. The measures shown in Figure 1b, the number
of interactions and the average clustering coefficient, are the
analogues to the total energy and the radius of gyration. The
number of interactions again is small for small ε, increases
strongly around ε ) 1kBT, and then saturates because the
cluster cannot be compacted any further once the most dense
packing is reached. The increase of the number of interac-
tions for ε > 1.5kBT can be attributed to the behavior of the
particles on the surface of the cluster, which try to penetrate
deeper into the cluster, thus making the surface smoother.
The clustering coefficient also increases around ε ) 1kBT
before it saturates, indicating the dense packing inside the
cluster.

Figure 1. Complex formation monitored via real-space and
graph measures. Results from simulations of 200 particles
with a spherical attractive well potential for different well depths
ε. All graphs show a transition around ε ) 1kBT, above which
the particles form a large complex. The data points were
connected by lines as guides to the eye. (a) Real space
measures total energy (filled triangles) and radius of gyration
(circles). (b) Number of interactions, i.e., links in the network
derived from the cluster (triangles) and average clustering
coefficient (circles) of the complete graph. (c) Total number
of connected components (triangles) and number of con-
nected components containing more than one particle (circles).
(d) Maximum (triangles) and average (circles) degrees of the
nodes of the cluster’s graph.
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Whereas the measures of panels a and b put the emphasis
on the central large cluster at ε > 1kBT, Figures 1c and 1d
highlight the behavior of the particles for weak attractions.
According to panel c, the total number of connected
components decreases monotonically with increasing ε. For
εe 1kBT, the number of connected components of size larger
than one stays roughly constant. In this regime the simulation
box contains many small complexes with average sizes from
two to four particles. At increasing ε they start to collapse
into large clusters until for ε g 2kBT, there is only one large
component (complex) left including all 200 particles.

This behavior is also reflected by the average and maximal
degrees of the particles shown in Figure 1d: a maximal
degree of three for small ε indicates a complex of size four.
In a densely packed hexagonal three-dimensional cluster, a
particle has 12 direct neighbors. With the width of the
attractive potential chosen for these simulations, also the
second neighbors may be counted as bonded if the cluster is
packed densely enough. This leads to the maximal degree
of 18 for large ε. Again, the clustering transition can be seen
clearly.

These simple graph measures can be computed from the
simulations with little additional overhead. When compared
to an analysis in coordinate space alone, they readily provide
a wealth of insight into the behavior of the particles at weak
interactions, about the clustering transition, and about the
internal structure of the single complex for strong attraction.
Certainly, particles with a spherically isotropic attraction are
an extremely simple toy system, which can also be fully
understood without the graph analysis. When more structured
interactions lead to the formation of specific spatial structures
as is the case in the following two examples, the advantages
of including the graph analysis will become more obvious.

Particles with Equatorial Ring Patches. When the
attraction between the particles was restricted to their
equatorial region, membrane-like two-dimensional structures
developed as expected. In the following example, an ad-
ditional attractive well potential similar to eq 3 with rC )
4 a.u. and a depth of εW ) 4kBT was applied between the
particles and the bottom wall of the simulation box. The
simulation box had a volume of (100 a.u.)3. Periodic
boundary conditions were applied in the other two dimen-
sions, and the top wall of the box opposite of the attractive
surface simply reflected the particles. This setup mimics the
formation of ordered layers of, for example, proteins on solid
surfaces.28

Figure 2 shows four snapshots from a spatial simulation
with 200 particles. Initially, the particles formed small
clusters or adsorbed to the bottom wall (top panels).
However, because of construction, the clusters in solution
were less stable than those adsorbed to the wall. Conse-
quently, these small clusters eventually fell apart because
of thermal fluctuations, and all particles were finally attached
to the bottom wall. There, their mutual interaction led to the
formation of a hexagonally structured layer. The apparent
gap between the two seed clusters seen in the third snapshot
at 105 iterations was finally filled by the remaining free
particles. Although the last snapshot still shows a clear grain
boundary between the two domains originating from the seed

clusters, this boundary finally disappeared because of reor-
ganization of the particles, and a single, hexagonally ordered
layer of adsorbed particles was formed (snapshot not shown).

A much richer understanding of the dynamic processes
during the formation of the surface layer is obtained when
the measures derived from the interaction graph are consid-
ered, too. Figure 3a shows the sizes of the connected
components that occur during the equilibration phase of the
simulation. A dot denotes that at least one cluster of the
corresponding size was present at a given iteration. This
statistical representation illustrates several trends: (i) from
the many small clusters that form in the beginning, a number
of clusters of sizes around 30 particles emerged. (ii) Many
of these intermediate-size clusters slowly shrank again. (iii)
Several clusters constantly grew in size, finally forming one
large adsorbate. The stepwise increase of these clusters during
the first 104 iterations suggests that several seeds quickly
associated into a single cluster that then grew by attracting
individual particles from the bulk. (iii) The fraction of the
small few-particle clusters in the bulk constantly decreased
both in cluster size and number.

The hexagonal structure shown in Figure 2d results in a
special signature in the degree distribution P(k), as illustrated
in Figure 3. Here, P(k) was averaged over the simulation
after the equilibration phase, i.e., between iterations 2 × 105

and 106. Most of the graph nodes had k ) 6 as in a two-
dimensional hexagonal lattice. The nodes with k < 6 are
the ones with missing neighbors found on the rims of the
adsorbed layer. The few nodes with k ) 7 are particles in

Figure 2. Formation of an ordered layer, visualized in the
spatial domain: Snapshots after 103, 104, 105, and 2 × 105

iterations (top left to bottom right) from a simulation of 200
particles with attractive equatorial patches and an adhesive
bottom wall of the simulation box. The inset in the last
snapshot shows a close-up view of one of the particles in three
different orientations. The ring indicates the region where two
particles attract each other. According to the given interac-
tions, the particles adsorb to the surface as an ordered layer
with a hexagonal structure.
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the region of the grain boundary where the hexagonal lattice
was disturbed.

The graph analysis also allows focusing on a certain group
of particles, as shown for the clustering coefficient of the
nodes with k ) 6 in Figure 3c. In a perfect hexagonal lattice,
all nodes have C(6) ) 0.4. This value also occurred most
frequently in the equilibrated particle layer. However,
because of the rearrangement dynamics around the grain
boundary, some of the six neighbors of a certain particle
sometimes separated too far from each other so that no bond
was established and the connectivity in this region was
reduced. One could now use this information to identify these
less interconnected and thus less stable regions of the cluster
and examine their dynamics in more detail.

Compared to the first example, the graph analysis in this
slightly more complex scenario provides additional insights
into the dynamics of the particle adsorption. These would
be hard to obtain and even harder to visualize from the spatial
view alone. Together with the few snapshots of Figure 2,
the cluster size evolution of Figure 3 provides an intuitive
visualization of the dynamics of the growth and shrinking
stages of the clusters. For example, around iteration 8 × 104,
the large cluster, consisting of about 160 particles at that
time, temporarily fell apart into a larger and a smaller part
of 130 and 30 particles, respectively. Such events had
occurred already earlier, too, around iteration 5 × 104.
However, here the smaller fragment is not so well visible in
Figure 3a among the other smaller clusters.

Icosahedral Complexes. The previous example showed
how graph measures can be used to collect and visualize
detailed information about the dynamics during structure
formation and how regular structures (and irregularities
therein) can be easily identified and interpreted. The last
application presented here is the formation of icosahedral
complexes. In this case, the objective is to identify these

highly regular structures among all the particles in the
simulation, to monitor their formation, and to assess their
quality.

With the opening angle of the attractive ring patch set to
58°, one particle can bind to five other particles, which leads
to the formation of icosahedral complexes of twelve par-
ticles.24 A spatial representation of a completely assembled
icosahedron and its graph representation are shown in the
second row of Figure 4. Each of the particles has exactly
five neighbors. Consequently, the degree distribution is zero
everywhere except for P(k ) 5) ) 1 (see third column of
Figure 4). Among the five neighbors, five of the ten possible
links are established, leading to a clustering coefficient of
C(5) ) 1/2 for each of the particles (fourth column). A third
signature of an icosahedron is its distribution of path lengths,
which consists of 30 paths of lengths one and two,
respectively, and six paths of length three that connect the
pairs of the diametrically opposite particles (last column).

Any perturbation in the assembly of an icosahedron either
changes the number of particles or their connectivity. This
in turn is reflected in perturbations of P(k), C(k), and the
distribution of path lengths. A correct icosahedron can thus
be identified by the correct size and the correct network
measures. In contrast to the correctly assembled icosahedron
from the second row, the third row of 4 illustrates the
signatures of a slightly misfolded icosahedral complex. Here,
P(k) has an additional nonzero entry for k ) 4 and P(5) <
1. The C(k) and D(l) distributions are perturbed, too. Because
of the partly opened structure, some shortest paths have the
length four. These different behaviors allow easy and
unambiguous assess to the quality of an icosahedron, even
if the spatial representation seems correct. Figure 4 also
shows two examples of incorrectly assembled complexes of
N ) 8 and N ) 16 particles, respectively.

Figure 3. Formation of an ordered layer, visualized in the network domain. (a) Sizes of the connected components that formed
during the equilibration phase of the simulation shown in Figure 2. (b) Averaged degree distribution and (c) average clustering
coefficient distribution of the particles with k ) 6 during the steady state after 2 × 105 iterations.
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With respect to the dynamics of complex formation, the
first signature of icosahedron formation during a simulation
is the occurrence of connected components of size 12, see
Figure 5a. This simulation was performed with 100 particles
in a box of size (70 a.u.)3 with periodic boundary conditions.
Obviously, this number of particles would allow for the
formation of up to eight complete icosahedra. However, it
was unclear whether this maximum number was kinetically
accessible on a typical simulation time scale. Here, five to
six complexes of size 12 assembled during the first 105

iterations, see Figure 5b. From the remaining fragments, a
large unstructured complex of about 30 particles formed at
a later stage. For each of the complexes of size 12, we
computed P(k), C(k), and D(l) and compared them to the
distributions expected for a correct icosahedron (cf. Fig-
ure 4). This filtering gave four to five correct icosahedra
(see Figure 5c). Comparing panels b and c shows that there

were essentially five icosahedra present in the simulation run.
Because of the random displacements, one of the monomers
sometimes left its correct position in the complex by breaking
some of the bonds. However, these deviations were not
strong enough to break the complex apart completely. Note
that the nearly correct icosahedron from Figure 4 (third row)
was taken from this simulation.

Using Information from the Graph for Cooperative
Moves in the Simulation. A shortcoming of the Monte-
Carlo approach used so far is that the particles are moved
independently. With the interaction potential used, moving
a nonbonded particle does not change the total energy, and
this new state is always accepted. Thus, the particles
diffusively move through the simulation volume as long as
they are not bonded to any other particle. But as soon as
they are bonded to one or more of the other particles, any

Figure 4. Correctly assembled clusters can be identified via their network signatures. Examples of complexes found in the
simulations of icosahedron formation. The spatial representation of the chosen complex is shown in the first column, the
corresponding network graph in the second column. The following columns give the degree distribution P(k), the degree-averaged
clustering coefficient distribution C(k), and the distribution of path lengths D(l), respectively. The second row belongs to a correctly
assembled icosahedron with N ) 12 particles, while the third row shows a slightly misfolded icosahedron. The first and last rows
belong to complexes of N ) 8 and N ) 16 particles, respectively.

Figure 5. Formation of clusters of size 12 and of icosahedra during a simulation of 100 particles with attractive ring patches
with a 58° opening angle. (a) Sizes of the formed clusters, (b) number of clusters of size 12, and (c) number of correctly assembled
icosahedra.
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displacement of the chosen particle is strongly suppressed,
because this would involve the breaking of bonds and the
corresponding increase of the energy. Hence, complexes
become essentially fixed in space with such a one-particle-
at-a-time updating scheme.

This artificial behavior can be elegantly overcome by
making use of the information from the graph about the
connected components. Our idea was to treat each formed
complex as one pseudoparticle that is propagated as a whole.
Keeping reality in mind, we suggest that when one particle
in a complex is displaced, its neighbors should also be
dragged along via the bonds. With the information from
the graph, it is now straightforward to not only displace a
single particle in the spatial Monte-Carlo algorithm, but to
also propagate this displacement along the bonds. Here we
implemented a simple variant, where the next graph neigh-
bors of the chosen particle are also displaced by a fraction
R < 1 of the test move.

Figure 6 shows how such a propagation of the trial moves
to the next neighbors with R ) 0.5 makes a complete
icosahedral complex diffuse through the simulation volume
(green trajectory). With R ) 0, i.e., when only a single par-
ticle is displaced at a time, the center of mass of the complex
only exhibits small fluctuations around its otherwise fixed
position (red trajectory). This implementation could be
extended by considering not only nearest neighbors but also
second-nearest neighbors up to an arbitrary distance.

When cluster formation is considered, the coupling ef-
fectively reduces the relative displacements of neighboring
particles. This has the same effect as slightly extending the
range of the interaction potential. Consequently, with in-

creasing R, clusters form already at smaller potential depths
ε (data not shown).

Summary

In summary, we have shown how a dynamically updated
graph can be used conveniently to analyze and observe
complex formation during a spatial simulation. Since the
graph analysis is independent of the simulation, the Monte
Carlo approach chosen here for simplicity can be replaced
by a different model, as for instance Brownian dynamics or
force field simulations. The criterion for placing an interac-
tion surely needs to be adjusted appropriately. Then, for each
pair of particles, a separate meaningful definition of an
interaction has to be chosen based for example on a maximal
relative distance and possibly some angles measuring their
relative orientation and/or on a threshold to the interaction
energy.

On the graph side, it appears worthwhile to explore the
usefulness of more advanced graph measures in the future.
For simulations at higher concentrations, for example, the
complete complexes start to interfere with each other. These
interacting complexes could be distinguished by means of a
biconnected or k-connected components analysis as well as
a cluster search when a simple analysis of connected
components would fail.26,29 Particles and interactions that
connect two clusters can then be identified via their between-
ness.29 For simulations of more advanced particles that form
clusters with a specific shape, a motif search as used by Pržulj
et al.,30 Middendorf et al.,31 or Baskerville et al.32 could be
applied.

The results presented here focused on problems with a
known geometry of the correctly formed complex. Moreover,
the first example showed that the combination of spatial
simulation and network analysis may also be advantageous
in situations where the final structure is not known a priori
or when, such as in the rather amorphous focal adhesions, a
single “correct” configuration does not even exist. Then, the
network analysis can be used to identify and to separately
monitor the convergence of the “clustered part” of the
simulation. Comparing subsequent network snapshots ad-
ditionally allows us to distinguish the more stable regions
of such dynamic assemblies from the more dynamic growth
regions.
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Abstract: We have developed automatic methods to calculate multipoles and anisotropic
polarizabilities for all atoms and bond centers in a protein and to include such a model in the
calculation of electronic properties at any level of quantum mechanical theory. This approach is
applied for the calculation of the electronic spectra of retinal in rhodopsin at the CASPT2//
CASSCF level (second-order multiconfigurational perturbation theory) for the wild-type protein,
as well as two mutants and isorhodopsin in QM/MM structures based on two crystal structures.
We also perform a detailed investigation of the importance and distance dependence of the
multipoles and the polarizabilities for both the absolute and the relative absorption energies. It
is shown that the model of the surrounding protein strongly influences the spectrum and that
different models give widely different results. For example, the Amber 1994 and 2003 force
fields give excitation energies that differ by up to 16 kJ/mol. For accurate excitation energies,
multipoles up to quadrupoles and anisotropic polarizabilities are needed. However, interactions
with residues more than 10 Å from the chromophore can be treated with a standard polarizable
force field without any dipoles or quadrupoles.

Introduction

Electronic spectroscopy is one of the most important sources
of information about biological systems. Therefore, one of
the major goals in theoretical chemistry has been to obtain
methods that accurately predict electronic spectra of chro-
mophores in proteins. This is a formidable task, because it
is well-known that the surrounding medium strongly affects
the spectrum of a chromophore. Therefore, many attempts
have been made to model such effects also in theoretical
calculations. For pure solvents, detailed methods exist, which
explicitly include the closest solvent molecules in the
calculations using a combination of accurate quantum
mechanical (QM) methods, detailed electrostatic models, and
statistical simulation methods.1 Thereby, the most important

effects are included: electrostatics, polarization, dispersion,
exchange repulsion, and dynamic effects.

For proteins, calculations have not reached this level yet,
but many attempts have been made to include at least some
of these effects, for example, by point-charge models2-11

and multipole models12 for the electrostatics, atomic isotropic
polarizabilities for polarization,13-17 extended QM systems
(typically at the semiempirical level) to include some
dispersion and exchange repulsion,18 self-consistent reaction-
field methods for solvation effects,19 and sampling of many
conformations.3,14,20 However, few investigations have in-
cluded several of those effects at the same time.21 The reason
for this is mainly the heterogeneous nature of a protein, which
requires a very large number of parameters that vary with
geometry. In this Article, we take a first step in this direction,
by implementing QM methods to calculate a multicenter-
multipole + anisotropic polarizabilities model for a full
protein, as well as methods to include such a detailed model
of the electrostatics and polarization into accurate ab initio
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QM calculations. Moreover, we study the influence and
distance dependence of the various terms in this model on
both absolute and relative absorption energies. Such informa-
tion can point out how much of the model needs to be
recalculated if dynamics effects are included by repeating
the calculations on several conformations.

As a test case, we use the retinal chromophore in the
protein rhodopsin, which already has been the subject for
many theoretical studies of the protein influence on the
spectrum.22 This G protein-coupled receptor is responsible
for the vision in mammals, and the protein is responsible
for the tuning of the same chromophore in the various color
pigments in the cones of our eyes.23 The 11-cis retinal
chromophore is covalently bound to the Lys-296 residue
(numbering according to the bovine enzyme) via a protonated
Schiff-base linkage (Figure 1). After the absorption of a
photon, the chromophore is converted to all-trans retinal,
which triggers the neuronal signal.

In this Article, we study the wild-type protein, as well as
two mutants: In the first, the counterion to the protonated
Schiff-base, Glu-113 is converted to Asp, with one CH2

group less, leading to a movement of a charged group close
to the chromophore.24 In the second, the small Gly-121
group, which forms van der Waals contact with the �-ionone
ring of the chromophore, is converted to a much more bulky
Leu residue.25 Finally, we also study isorhodopsin, in which
the 11-cis retinal chromophore is replaced with 9-cis retinal.26

All calculations are based on previous QM/MM structures
of the chromophore10,11 in two different crystal structures27,28

and a well-tested CASPT2 protocol for the spectra calcula-
tions.29

Methods

Structures. All calculations are based on previously
determined QM/MM structures,10,11 in which the chro-
mophore, Lys-296, and two nearby water molecules were
optimized by the CASSCF (complete active space self-
consistent field) method and 6-31G* basis set, keeping the
rest of the protein fixed at the crystal structure (and treated
by the Amber 1994 force field30). Two different crystal
structures were used, one 2.8 Å-resolution structure of bovine
rhodopsin (1HZX)27 and a newer structure of the same
protein at 2.2 Å resolution (1U19).28 Following the QM/

MM calculations, these residues were charged: Met-1, Ala-
348 (amino and carboxy terminals), all seven Arg residues,
Lys-245 and 248, Asp-190 and 300, Glu-25, 113, 134, 150,
197, 232, 247, and 249, as well as His-195. All of these
residues, except the counterion Glu-113, are solvent-exposed
and ensure that the full protein is neutral. All of the other
amino acids (including three Asp, nine Glu, and nine Lys
residues) were kept neutral, in agreement with experiments
for this membrane-bound protein.31 For isorhodopsin, the
chromophore, Lys-296, and the two water molecules were
optimized, whereas in the Glu113Asp and Gly121Leu
mutants, the mutated groups were also optimized.10 The full
retinal molecule, as well as a CH3NHd model of the Lys-
296 protonated Schiff-linkage (from the NZ, HZ, CE, HE,
and CD atoms; cf., Figure 1), were treated at the QM level,
whereas the rest of Lys-296, the two water molecules, as
well as Asp-113 or Leu-121 were treated at the MM level.
Calculations with the 1U19 crystal structure were restricted
to the wild-type protein and isorhodopsin.

Spectra Calculations. The electronic spectra were cal-
culated at the CASPT2//CASSCF level (complete active
space second-order perturbation theory), as has been de-
scribed before.10,29 The same QM system as in the QM/MM
optimizations was used. The wave function was optimized
at the CASSCF level (complete active space self-consistent
field)32 with the 6-31G* basis set and an active space
consisting of 12 electrons in 12 active orbitals. An average
over the three lowest states was optimized, but the polariza-
tion field for the lowest state was used. Next, the energy of
the ground state was calculated by the CASPT2 method,33,34

with the 22 core orbitals frozen and with a level shift of 0.2
to remove intruder states. To be consistent with the old
calculations, the new zeroth order Hamiltonian of CASPT235

was not employed (i.e., the keyword IPEA was set to 0).
Finally, the CASSCF energy was optimized again for the
three-level average, but using the polarization field for the
second state, and the energy for the second state was
optimized with another CASPT2 calculation. All calculations
were run with a developmental version of the Molcas 7.1
software.36

Multipoles and Polarizabilities. The influence of the
surrounding protein was simulated by a detailed multicenter-
multipole + polarizabilities model. This classical model
consisted typically of charges, dipoles, and quadrupoles, as
well as anisotropic polarizabilities for all atoms and bond
centers in the protein (in total 10 824 and 11 012 centers for
the HZX and U19 structures, respectively).

The quantum-mechanical and classical subproblems were
solved in a self-consistent manner at the CASSCF level. In
each CASSCF iteration, the electric field from the charge
density of either the ground state or an excited state was
computed at each center and added to the field from
multipoles and induced dipoles. The induced dipoles were
updated to this field until self-consistency within the classical
system was obtained. The resulting electric field from the
classical system (polarization field) was used to perturb the
Hamiltonian operator, thus contributing to the change in
charge density in the next CASSCF iteration. Similar
approaches have been used before.15,37-39 The final pertur-

Figure 1. Structure of the protonated Schiff-base 11-cis
retinal chromophore in rhodopsin with the quantum (QM) and
molecular mechanics (MM) systems, as well as atom names
marked out.
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bation obtained by this procedure was applied in the CASPT2
calculation. In the computed energy, both the internal
polarization energy of the classical system and the coupling
between the quantum-mechanical and classical systems were
included.

The multipoles and polarizabilities were obtained with the
LoProp approach,40 using the Molcas software. The calcula-
tions were performed either at the Hartree-Fock level with
the 6-31G* basis set41 or at the density functional B3LYP42

level with the aug-cc-pVDZ basis set.43 Each basis set was
turned into the atomic natural orbital form (as required by
the LoProp procedure) by a linear transformation that does
not affect the orbital optimization. The properties were
calculated for the whole protein by dividing it into the
individual amino-acid residues, which all were capped with
CH3CO- and -NHCH3 groups (dipeptides). The effect of
the capping groups was removed by calculating the properties
also of the overlapping CH3CONHCH3 fragments and
subtracting them from the properties of the corresponding
dipeptides, the molecular fractionation with conjugate caps
approach, which has been shown to give excellent results.44,45

A separate calculation was performed on every residue in
the structure, with the correct geometry from the QM/MM
structure. Lys-296 was truncated at the CG atom, which was
converted to a hydrogen atom. Test calculations were also
performed, in which Lys-296 was instead truncated at the
CD atom (cf., Figure 1). However, this led to very unstable
results, because the hydrogen atoms from the truncated CD
atom on the QM and MM sides are only ∼0.5 Å apart.

To accomplish a well-defined classical treatment of
intramolecular polarization, the centers were divided into
groups. In the calculation of the electric field at a certain
center, multipoles and induced dipoles from a list of groups
were excluded, as described in the Molcas manual.32 For
the LoProp model, these exclusion lists were constructed so
that polarization between any two centers that belong to the
same fragment (dipeptide) in the LoProp calculations is
omitted, because this polarization has already been treated
quantum-mechanically (a rigorous motivation can be found
in ref 45). For the polarizable Amber force field (ff02), we
followed the Amber practice to ignore polarization between
atoms separated by one, two, or three bonds. When testing
the distance-dependent transition between these two models,
a “generous” exclusion protocol was used to ensure that no
unphysical polarization occurs. Thus, polarization between
two centers treated by different models was omitted if it
would have been omitted in either of the two models. A
simpler method, using the LoProp exclusion rule for the
Amber part as well, was also tested and gave similar results.

The splitting and splicing of the protein were performed
with local software, as described in the Supporting Informa-
tion. The calculations for a full protein took ∼400 CPU hours
at the HF/6-31G* level and ∼6000 CPU hours at the B3LYP/
aug-cc-pVDZ level. For isorhodopsin and the two mutants,
only groups with new geometries (Lys-296, the two water
molecules, and the mutated residue, if any) were recalculated
(in fact, in the original calculations,10,11 hydrogen atoms were
reoptimized in U19-isorhodopsin and the HZX-G121L

mutant, but these changes were not considered in this
investigation, because the other structures were not changed).

In the 1HZX structure, residues 236-240 and 331-333
are missing. In the LoProp model, residues 235 and 330 were
truncated by -NHCH3 groups, and residues 241 and 334
were truncated by CH3CO- groups (this is necessary to make
the QM calculations possible). However, with the Amber
force fields, no such truncating groups were used, following
the original calculations10,11 and because these capping
groups are not available with all force fields.

Following the previous calculations, no effects of the
surrounding solvent were included. Test calculations with a
spherical cavity surrounding the protein (i.e., with a radius
of 44-50 Å) indicated that the solvent effect is only ∼2
kJ/mol. However, its inclusion is complicated by the fact
that the solvent reaction field should not (in variance to the
polarization field) relax for the excited state.

Result and Discussion

We have calculated the electronic spectra of rhodopsin,
isorhodopsin, and two mutants with the CASPT2//CASSCF
approach, performing a detailed study of the influence of
the surrounding protein. The use of two different crystal
structures gives us a first indication of the reproducibility of
the results and of their conformational dependence. Although
the two lowest excitation energies are included in the
CASSCF state average, we concentrate the discussion on the
lowest (and main) excitation, which experimentally is found
around 498 nm (240 kJ/mol).46 The goal of this Article is
not to reproduce this value (which would require a better
basis set in the CASPT2//CASSCF step and an extensive
sampling of conformations of the protein and the chro-
mophore), but to take a first step in this direction by
investigating what is needed for an accurate modeling of the
surrounding protein for a single structure. This is done by
using a very detailed model of the electrostatic and polarizing
effect of the surroundings, consisting of a multicenter-
multipole model up to quadrupoles and anisotropic polariz-
abilities for all atoms and bond centers of the protein. We
then examine what parts of this model are actually needed,
both for absolute and for relative excitation energies, by
removing the various terms stepwise. We also study the
distance dependence of the various terms, that is, how far
from the chromophore they have a significant effect.

Spectra. Calculated excitation energies for the various
structures are collected in Table 1. The treatment of the
surroundings is described by a vector of four entries in square
brackets. The four entries are the charges, which may be
LoProp (+), various Amber force fields (ff94, ff03, or
ff0230,47,49), or integer charges only for the charged residues,
Asp, Glu, Lys, and Arg (i); the dipoles, which may be LoProp
(+) or none (-); the quadrupoles, which may be LoProp
(+) or none (-); and the polarizabilities, which may be
LoProp anisotropic polarizabilities (a), scalar isotropic po-
larizabilities, taken as the average of the diagonal elements
of anisotropic polarizabilities (s), polarizabilities from Amber
(ff0249), or none (-). Thus, our standard and most accurate
model is [+,+,+,a], whereas the original investigations10,11

used a [ff94,-,-,-] model.
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It can be seen that the isolated chromophore (retinal +
CH3N+H- from the protonated Lys-296 Schiff base) in
vacuum [-,-,-,-] gives an excitation energy of 215 kJ/
mol in U19 and 220 kJ/mol in the HZX crystal. This is within
1 kJ/mol of previously published values,10,11 and ∼25 kJ/
mol lower than the experimentally observed excitation energy
in rhodopsin. The other structures gave slightly different
excitation energies: 3 (U19) or 9 (HZX) kJ/mol higher
excitation energy for Iso-Rh, 2 kJ/mol lower energy for the
E113D mutant, and 5 kJ/mol higher energy for the G121L
mutant. These values reflect the influence of the geometry
on the excitation energies.

If the chromophores are inserted into the rhodopsin protein
with the full LoProp model [+,+,+,a], the spectra shift
significantly: The excitation energy shifts by 46-49 kJ/mol
for Rh and by 48-61 kJ/mol for Iso-Rh and the mutants.
The spectral shift is in the right direction as compared to
the vacuum calculation (i.e., the excitation energy increases).
However, the correction is too large, giving rise to too high
excitation energies, and errors compared to experiments
similar to those of the vacuum calculations (18-36 kJ/mol).
This is an effect of the small basis sets used in the
calculations and the fact that a single minimized structure is
used. However, that is no problem in this investigation,
because it is a constant factor, and we will only discuss the
relative effect of the various terms in the multipole +
polarizability model.

Multipole Model. We will first study the effect of the
multipoles on the calculated spectra. From Table 1, it can

be seen that if the quadrupoles are ignored, the spectra shift
by 4-15 kJ/mol without polarizabilities (i.e., the difference
between [+,+,+,-] and [+,+,-,-]) and by 1-13 kJ/mol
with the polarizabilities ([+,+,+,a]-[+,+,-,a]). The excita-
tion energies are reduced (by on average 11 and 5 kJ/mol),
with one exception. Relative energies (i.e., between isor-
hodopsin and rhodopsin or between rhodopsin and its
mutants) change by up to 12 kJ/mol (Table 2). Thus, the
effect of the quadrupoles is quite small, but it cannot be
ignored if you aim at accurate results.

If the dipoles are also removed, the spectra shift by 8-24
kJ/mol without and by 2-22 kJ/mol with polarizabilities
(relative to the calculations without quadrupoles). However,
this time, the excitation energies increase (by 16 and 10 kJ/
mol on average), so that the energies go back to close to the
original [+,+,+,a/-] energies again (average difference 4-5
kJ/mol). Relative energies change by up to 19 kJ/mol. Thus,
the dipoles have a slightly larger effect on the excitation
energies than do the quadrupoles.

The charges have an even larger effect on the excitation
energies: The spectra shift by 42-62 kJ/mol without and
by 14-36 kJ/mol with polarizabilities if the charges are
removed (as compared to the [+,-,-,a/-] calculations). In
all cases, the excitation energies are reduced (by 54 and 29
kJ/mol on average). Relative energies change by a much
smaller amount, up to 14 kJ/mol. Thus, the charges have a
large effect, as could be expected.

We have also examined the effect of various sets of point
charges on the excitation energies. Calculations with CD

Table 1. Calculated Excitation Energies for Rhodopsin, Isorhodopsin, and the Glu113Asp (E113D) and Gly121Leu (G121L)
Rhodopsin Mutants, Using Two Different Crystal Structures, U1928 and HZX27a

U19 HZX

model Rh Iso-Rh Rh Iso-Rh E113D G121L

q dipole q-pole pol 6-31G* VDZ 6-31G* VDZ VDZ VDZ VDZ VDZ

+ + + a 257.5 260.7 269.0 277.0 268.4 283.3 265.5 285.3
+ + + s 257.6 259.3 269.0 274.2 268.0 281.6 265.7 282.2
+ + - a 253.9 257.8 262.1 266.6 267.8 278.5 266.0 272.4
+ - - a 263.2 259.4 278.6 276.0 271.7 291.5 268.6 294.8
i - - a 326.6 332.0 306.0 313.1 291.4 298.2
- - - a 230.6 237.4 234.9 241.4 245.3 253.9 246.0 247.9
+ + + - 259.9 263.4 271.0 274.3 270.1 283.2 256.5 279.5
+ + - - 248.7 251.9 255.8 259.1 263.5 270.8 252.7 264.1
+ - - - 267.4 262.7 279.6 274.2 274.0 289.0 260.3 284.3
i - - - 322.1 326.4 311.3 315.1 294.6 305.3
- - - - 214.9 217.9 219.6 228.7 217.9 224.2
ff94 - - - 258.1 269.8 275.9 292.4 264.1 289.7
ff03 - - - 272.0 285.4 287.0 303.9 267.0 300.7
ff02 - - - 264.1 279.5 277.1 293.1 264.6 290.5
ff02 - - ff02 254.4 264.7 269.7 285.1 265.6 284.5
ff94CDb - - - 230.2 243.7 253.6 266.8 243.0 261.1
ff03CDb - - - 283.2 305.7 283.7 318.4 280.3 319.6
-c - - - 215.5 219.7 227.2 218.6 223.8
ff94CDc - - - 233.2 250.3 262.4 240.2 269.7
expd 240.2 247.7 240.2 247.7 234.7 251.9

a Two different methods were used to calculate the multipoles and polarizabilities: HF/6-31G* and B3LYP/aug-cc-pVDZ (VDZ). The
treatment of the surroundings is described by the four entries in model: the charges (q), which may be calculated by the LoProp
procedure40 (+), taken from the Amber force fields (ff94,30 ff03,47 or ff0249), taken as simple integer charges for the charged residues, Asp,
Glu, Lys, and Arg, (i), or be ignored (-); the dipoles and quadrupoles (q-pole), which both may be calculated by LoProp (+) or be ignored
(-); and the polarizabilities (pol), which may be fully anisotropic and calculated by LoProp (a), be scalar and isotropic, taken as the trace of
the anisotropic ones (s), be taken from the Amber 2002 force field49 (ff02), or be ignored (-). b In these calculations, the CD atom was
converted to a hydrogen junction atom and charges were present on this atom, as well as on the CG and HG atoms (in all of the other
calculations, instead the CG atom was converted to a hydrogen junction atom, and no charge was present on the CD, HD, and HG atoms;
cf., Figure 1). c Data from refs 10 and 11. In the ff94CD calculations, charges were present on the CG, HG, and HD atoms, but not on the
CD atom. d Data from refs 24, 25, 26, and 46.
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junctions in the MM system and employing the Amber 1994
force field30 (ff94CD in Table 1) give results that differ from
those of our full multipole model [+,+,+,-] by 15-33 kJ/
mol (always more negative; the original calculations10,11 used
a similar approach, but they included charges on the HD
atoms, but not on the CD junction atom; these results differ
from the ff94CD results by 3-9 kJ/mol). However, this
means that there are two hydrogen capping atoms, one in
the QM system and one among the point charges, both
representing the CD atom of Lys-296 and only 0.5 Å apart.
Such a procedure makes the calculations very unstable. For
example, it can be seen from Table 1 that if the charges are
shifted to Amber 2003 charges47 instead (ff03CD), the
excitation energies change by 30-62 kJ/mol, showing that
the results are completely unreliable. The same happens if
we use a LoProp model with two capping atoms from CD;
the results become unstable and counterintuitive.

Therefore, all of our calculations are performed with a
hydrogen atom representing CD in the QM system and a
charge representing the CG atom of Lys-296, whereas no
charges are included for the CD, HD, and HG atoms. The
results of such calculations with the Amber 1994 and 2003
force fields are also included in Table 1 (ff94 and ff03). It
can be seen that the deletion of these three charges changes
the excitation energies by 21-29 kJ/mol for ff94 and by
3-20 kJ/mol for ff03. Now, the results with the two force
fields are much closer to the LoProp model, with differences
of 1-9 kJ/mol (with a varying sign) for ff94 and 2-21 kJ/
mol (always smaller excitation energies) for ff03. The two
force fields differ by 3-16 kJ/mol, which shows that there
still is some ambiguity in the use of a point-charge model
of the surrounding protein. However, relative energies are
more stable and change by less than 8 kJ/mol.

In both Amber force fields, the charges were obtained from
QM calculations, using the RESP approach.48 However, in
the 1994 force field,30 the electrostatic potential was taken

from vacuum HF/6-31G* calculations, which are supposed
to overestimate the dipole moments in a way similar to the
average polarizing effect in solution. In the 2003 force field,47

the electrostatic potential is instead calculated using the
B3LYP/cc-pVTZ method (which gives almost correct dipole
moments), explicitly polarized with a (protein-like) con-
tinuum solvent with a dielectric constant of 4. Thus, two
different methods are used to obtain charges that are
polarized in an average way similar to a protein-like
surrounding. However, as we see from Table 1, the methods
give quite different spectral shifts of excitation energies in
a protein.

We have also used the charges of a third Amber force
field, the polarizable 2002 force field (ff02).49 These charges
were also obtained with the B3LYP/cc-pVTZ method, but
without the continuum solvent (i.e., in vacuum). Of course,
the charges are not intended to be used without the
polarizabilities, but this is similar to the comparison with
the LoProp multipoles without any polarization. The results
of the Amber 2002 charges (without the polarizabilities)
differ by 1-10 kJ/mol from our full multipole model, that
is, by an amount similar to that of the other Amber charges
and are always intermediate between those of the ff94 and
the ff03 charges.

An even simpler model of the surroundings is obtained
with only integer charges for the residues with a net charge
[i,-,-,a/-] models. From Table 1, it can be seen that such
a model changes the results as compared to the [+,-,-,
a/-] models by 22-67 kJ/mol (but only 3 kJ/mol in one
case). However, it can also be seen that the results go in the
opposite direction as compared to the calculations without
any multipole model of the protein with differences of
45-109 kJ/mol and that the results are far (13-66 kJ/mol)
from the full LoProp model. This shows that it is a poor
model.

Table 2. Shifts in Excitation Energies (in kJ/mol) for Isorhodopsin Relative to Rhodopsin in the Two Crystal Structures and
for the Glu113Asp and Gly121Leu Mutants Relative to the Wild-Type Protein Calculated with the Various Methodsa

model isorhodopsin mutants

q dipole q-pole pol U19 Hzx E113D G121L MAD max

+ + + a 16.3 14.9 -2.9 16.9 6.0 8.8
+ + + s 14.9 13.6 -2.3 14.2 4.8 7.4
+ + - a 8.8 10.7 -1.8 4.6 3.8 7.1
+ - - a 16.6 19.8 -3.2 23.1 8.8 12.3
i - - a 5.4 7.1 -14.6 -7.8 7.8 19.5
- - - a 4.0 8.6 0.7 2.6 5.0 9.1
+ + + - 10.9 13.1 -13.6 9.4 4.9 8.1
+ + - - 7.2 7.3 -10.8 0.6 4.2 11.1
+ - - - 11.5 15.0 -13.7 10.3 5.3 8.2
i - - - 4.3 3.8 -16.7 -6.0 9.0 17.7
- - - - 3.0 9.1 -1.7 4.6 4.3 7.1
ff94 - - - 11.7 16.5 -11.8 13.8 5.4 9.0
ff03 - - - 13.4 16.9 -20.0 13.7 7.9 14.5
ff02 - - - 15.4 16.0 -12.5 13.4 6.3 8.5
ff02 - - ff02 10.3 15.4 -4.1 14.8 3.8 7.9
ff94CDb 13.5 13.2 -10.6 7.5 5.3 6.0
ff03CDb 22.5 34.7 -3.4 35.9 17.0 27.2

experimental data 7.5 7.5 -5.5 11.7 0.0 0.0

a In addition, the mean average deviation (MAD) and the maximum deviation (max) as compared to the experimental data24-26,46 are
given. b In these calculations, the CD atom was converted to a hydrogen junction atom and charges were present on this atom, as well as
on the CG and HG atoms (in all of the other calculations, instead the CG atom was converted to a hydrogen junction atom, and no charge
was present on the CD, HD, and HG atoms; cf., Figure 1).
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Polarizabilities. We next study the effect of the polariz-
abilities. If we replace all of the anisotropic polarizabilities
(symmetric 3 × 3 tensors) with scalar isotropic polarizabili-
ties (a single number, the average of the diagonal elements
in the anisotropic tensors), there is only a minimal change
in the excitation energies (less than 3 kJ/mol).

However, if the polarizabilities are completely removed,
the spectra change by 0-13 kJ/mol if there is a multipole
model of the protein and by 16-28 kJ/mol without any
multipoles. Relative energies change by a similar amount.
In general, the polarizabilities increase the excitation energies,
but with only charges or with the full multipole model, the
excitation energies decrease in many cases. This is a
significant effect, so for accurate results, polarizabilities are
important.

The polarizable Amber 2002 force field49 performs rather
well, with differences of 0-12 kJ/mol as compared to the
full LoProp model. Relative energies differ by up to 6 kJ/
mol. This is similar to the LoProp charges and polarizabilities
[+,-,-,a], which give errors of up to 10 kJ/mol.

Distance Dependence. Next, we studied the distance
dependence of the multipoles and polarizabilities; that is, we
removed (zeroed) multipoles or polarizabilities for all
residues outside a certain distance from the chromophore
(minimum distance between any atom in the residue and the
chromophore). This gives further information about the
influence of the multipoles and polarizabilities on the spectra
(it lets us identify accidental coincidences). Moreover, it gives
information about the range of each type of interactions,
which is important especially if we intend to study several
conformations of the protein (it tells us how far out the
multipoles or polarizabilities need to be recalculated for each
new conformation). We will consider both absolute and
relative excitation energies, but we concentrate on the U19
crystal and the Rh and Iso-Rh states. To ensure that the same
residues are used for the two states, distances were calculated
only for the Rh state and were used also for the Iso-Rh state.

The distance dependence of the conversion of anisotropic
polarizabilities to isotropic polarizabilities is shown in Figure
2a. It can be seen that the total effect (i.e., the difference
between the energies at the distance 35 Å ) only anisotropic
polarizabilities and 0 Å ) only isotropic polarizabilities) is
1-3 kJ/mol, as was also reported in Table 1. However, the
curves show that this small difference is coincidental: The
true distance variation is actually up to 11 kJ/mol, showing
that the anisotropy needs to be considered for accurate results.
However, the results are accurate to within 4 kJ/mol from 6
Å. Likewise, the two curves for Rh and Iso-Rh are almost
parallel, meaning that the relative excitation energy is almost
constant, 12-17 kJ/mol, and insensitive to whether aniso-
tropic or isotropic polarizabilities are used. Thus, the effect
of the anisotropic polarizabilities is quite short-ranged.

Next, we considered the effect of removing the polariz-
abilities completely. As we saw in Table 1, the polarizabili-
ties had a rather small effect on the spectrum, up to 9 kJ/
mol, but only 3 kJ/mol for the two U19 structures. Again,
the distance dependence in Figure 2b shows that this is
coincidental: The total effect of the polarizabilities is up to
46 kJ/mol, and the curves do not level out (within 4 kJ/mol)

until at 10 Å. The curves for Rh and Iso-Rh again run
reasonably in parallel, but the variation is larger, ranging
from 9 to 17 kJ/mol, but converging at 10 Å to 16 ( 1 kJ/
mol. Thus, the polarizabilities are important both for the
absolute and for the relative excitation energies.

Next, we looked at the effect of the quadrupoles. Figure
2c shows that the effect is up to 12 kJ/mol for rhodopsin
and up to 26 kJ/mol for isorhodopsin. The curves level out
around 10 Å. The difference between the two curves is 9-22
kJ/mol, but 16 ( 2 kJ/mol from 6 Å. Thus, we can conclude
that the quadrupole interactions are quite short-range, as
expected.

Interestingly, the effect of the dipoles is similar, but
somewhat smaller: up to 10 kJ/mol for rhodopsin and 17
kJ/mol for isorhodopsin. The curves level out at 6 Å. The
effect on the difference in excitation energy between Rh and
Iso-Rh is even smaller, and the difference is 9 ( 1 kJ/mol,
outside 2 Å.

Finally, we also tested the effect of going from a point-
charge model to a model with all charges zeroed, except for
residues with a net charge, for which a unit integer charge
was used at the center of the charge. From Figure 2e, it can
be seen that the effect is extensive, up to 97 kJ/mol, and it
does not level out until 15-25 Å. For the relative excitation
energy, the convergence is better, and the results are fully
converged at 15 Å. However, there are variations of up to
22 kJ/mol at shorter distances.

From this, we can conclude that the polarizabilities are
necessary, at least at distances up to 10 Å, although the effect
of going to scalar polarizabilities is smaller. The effect of
quadrupoles and dipoles is also extensive, but also converges
within ∼10 Å. Therefore, a proper approach to use to save
time if an extensive conformation sampling is employed (as
is most like necessary to obtain accurate results) is to use a
polarizable force field with scalar polarizabilities and only
point charges for all residues outside a distance of 10 Å from
the chromophore. There is no reason to use a nonpolarizable
force field, because polarizabilities are needed to get the close
interactions right. On the other hand, the use of scalar
polarizabilities (and omission of dipoles and quadrupoles)
makes the treatment of general parameters for the long-range
interaction much easier (there is no need to rotate any vectors
and matrices from a standard orientation to the actual
orientation in the protein). Thus, we recommend the use of
the polarizable Amber 2002 force field, or something similar,
for the long-range interactions, outside ∼10 Å.

Such an approach is illustrated in Figure 2f, where we go
from the full LoProp model to the Amber 2002 force field.
It can be seen that the results of ff02 differ from that of the
LoProp model by 6-12 kJ/mol, as was also seen in Table
1. Moreover, the difference increases to ∼20 kJ/mol around
4 Å. However, then it rapidly decreases, and at 10 Å and
outward, the difference is less than 2 kJ/mol. The relative
excitation energy between Iso and Rh converges even more
rapidly and is 16 ( 3 kJ/mol already at 8 Å. This shows
that it is an excellent approach to replace the LoProp model
with the simpler ff02 outside a radius of 10 Å from the
chromophore.
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Figure 2. Distance dependence of the effect of the various multipoles and polarizabilities for the first excitation energy of Rh
([) and Iso-Rh (9) in the U19 crystal. In addition, the difference between the two curves is given (2, and right axis). All multipoles
or polarizabilities for all residues within the given distance from the chromophore are changed. (a) Conversion from anisotropic
(35 Å) to isotropic (0 Å) polarizabilities; (b) deletion of the anisotropic polarizabilities (35 Å; no polarizabilities at 0 Å); (c) deletion
of the quadrupoles; (d) deletion of the dipoles; (e) conversion of LoProp charges (35 Å) to integer charges (0 Å); (f) conversion
from the full LoProp model to the polarizable Amber 2002 force field; and (g) conversion of B3LYP/aug-cc-pVDZ properties to
HF/6-31G* properties.
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Method and Basis-Set Dependence. Another way to
speed up the calculations is to employ a cheaper approach
to calculate the LoProp properties. To test this, we have for
the U19 structure calculated the multipoles and polarizabili-
ties at two levels of theory, HF/6-31G* and B3LYP/aug-
cc-pVDZ. From Table 1, it can be seen that the two methods
give quite similar results: With the full multipole and
polarizability model [+,+,+,a], the calculated excitation
energies differ by only 3 (Rh) or 8 (Iso-Rh) kJ/mol (note
that different methods are used only for the calculations of
the multipoles and polarizabilities; the excitation energies
are always calculated with the same method and basis set,
CASPT2/6-31G*). In fact, the cheaper HF/6-31G* is closer
to experiments (i.e., lower excitation energies), but this is
only fortuitous. Similar differences are obtained for the other
calculations, but with only charges [+,-,-,a/-], the HF/6-
31G* properties give higher excitation energies (by 3-5 kJ/
mol).

This small difference is quite unexpected, because polar-
izabilities normally depend strongly on the basis sets (and
method): diffuse functions are mandatory to obtain converged
and accurate polarizabilities, and the double-� basis is
actually probably still somewhat small to obtain converged
results.50 Likewise, the HF/6-31G* method should overes-
timate calculated dipole moments, and this is actually
employed in the Amber 1994 force field to get results that
should simulate the polarizing effect in water solution.30 In
our calculations, we see no such tendency.

The distance dependence of the transition from B3LYP/
aug-cc-pVDZ to HF/6-31G* properties is shown in Figure
2g. It can be seen that the actual effect is somewhat larger,
up to 7 kJ/mol for Rh and 12 kJ/mol for Iso-Rh. The results
are converged at ∼8 Å.

For relative excitation energies (the difference between
Rh and Iso-Rh), the difference between the two methods is
even smaller, typically 0-1 kJ/mol, but 4-5 kJ/mol for the
[+,+,+,a] and [+,+,+,s] calculations. The distance depen-
dence in Figure 2g shows that the difference is converged
around 8 Å. Thus, if errors of up to 8 kJ/mol are acceptable,
much computer time can be saved by calculating all of the
properties at the HF/6-31G* level. If this method is used
only for residues outside 8 Å, the error is less than 3 kJ/
mol.

Conclusions

In this Article, we have performed a detailed investigation
of how the surrounding protein is best modeled in theoretical
calculations of excitation energies. As a test case, we have
used the retinal chromophore in rhodopsin and calculated
the excitation energies at the CASPT2//CASSCF level. We
have studied both absolute and relative excitation energies,
in the latter case for variations in the chromophore (retinal
and 9-cis retinal) and in the protein (two rhodopsin mutants,
close to the chromophore). Theoretical excitation energies
are typically rather poor (as compared to the experimental
uncertainty), so theoretical investigations often concentrate
on relative excitation energies. Moreover, we have tested
the stability of the results by studying two different crystal

structures, giving rise to slightly different QM/MM structures.
We have used a very detailed model of the surroundings, a
multicenter-multipole model up to quadrupoles and with
anisotropic polarizabilities in all atoms and bond centers, as
the reference point, and then studied if any parts of this model
may be removed without compromising the results. The
investigation has led to a number of important and interesting
observations and conclusions.

Polarizabilities have a strong influence on the spectrum,
up to 46 kJ/mol, and can therefore not be ignored in any
detailed study of the effect of the protein on the spectrum
of a bound chromophore. The use of anisotropic polariz-
abilities is important at distances shorter than 6-10 Å.
Therefore, we strongly recommend the use of anisotropic
polarizabilities in calculations of excitation energies.

The polarizable Amber 2002 force field gives errors of
up to 10 kJ/mol, as compared to the full LoProp model
(which is calculated for the right conformation of the protein).
Thus, a polarizable force field does not solve the problem,
but it can be used to speed up the calculations for residues
more than 10 Å from the chromophore.

The effect of quadrupoles is up to 26 kJ/mol, that is, quite
significant for absolute excitation energies. For relative
energies, the effect is up to 13 kJ/mol, but it levels out already
around 6 Å.

The effect of dipoles is somewhat smaller, up to 11 kJ/
mol for absolute energies and 9 kJ/mol for relative energies.

The effect of point charges is very large, up to 60 kJ/mol
for absolute energies and up to 14 kJ/mol for relative
energies. The effect is long-ranged.

Different sets of simple point-charge models give quite
different results. For example, the Amber 1994 and 2003
charges give an effect that differs by up to 16 kJ/mol for
absolute and 8 kJ/mol for relative energies. This shows that
calculations with a fixed (standard) point-charge model (as
in most previous calculations2-11) give quite uncertain
results. The results are even more unreliable if there are point
charges very close to the chromophore. However, it is
possible that the effect is reduced if the geometry is optimized
with the respective force field.

Interestingly, multipoles and polarizabilities calculated at
the HF/6-31G* level of theory give an effect on the excitation
energies quite similar to those calculated at the much more
expensive B3LYP/cc-pVDZ level of theory, with errors of
less than 8 kJ/mol (6 kJ/mol for relative energies). The results
converge within 8 Å from the chromophore. Thus, if errors
of this size are acceptable, such an approach may save much
computer time.

A natural question is why such seemingly accurate results
have been obtained with theoretical calculations if the results
are so sensitive to the model of the surroundings. The answer
is that only relative excitation energies are normally con-
sidered. This is illustrated by Table 2, which shows the
difference in excitation energies of rhodopsin and isorhodop-
sin, as well as the calculated shift in the excitation energies
of the E113D and G121L mutants (i.e., the relative energies
studied in this Article, for which experimental data are
available). It can be seen that all calculations except one (ff03
with CG junctions) give mean absolute deviations of less
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than 10 kJ/mol and maximum errors of less than 20 kJ/mol.
In fact, even the vacuum model [-,-,-,-] gives excellent
results with a maximum error of 7 kJ/mol. Thus, accurate
relative energies are easily obtained, whereas correct absolute
energies are much harder to calculate.

Our results give us a firm indication of how accurate
absolute excitation energies of chromophores in proteins
should be calculated. Clearly, both point charges and
polarizabilities need to be considered for accurate results,
and they must be calculated for the actual conformation of
the protein, using an approach similar to the one used in
this Article. If the program used allows it, we see no reason
not to include a full multipole model for the electrostatics.
In fact, previous results indicate that the multipole model is
not converged until quadrupoles are included,21,51 as was
done in this Article. There are no computational reasons not
to include dipoles and quadrupoles in the calculations; they
do not make the calculations significantly slower, neither the
calculations of the multipoles, nor the spectra calculations.
Instead, it is the polarizabilities that are expensive; they
increase the calculation time for the properties by a factor
of 6 and that for the spectra calculation by a factor of 2-3,
mainly due to slower convergence of the CASSCF iterations.
However, all calculations in this Article were run in less than
3 days (two CASSCF and CASPT2 calculations), which is
not prohibitively much. In fact, this is much less than the
time taken for the calculation of the multipoles and polar-
izabilities for the surrounding protein at the B3LYP/aug-cc-
pVDZ level (∼250 CPU days, but it is trivially paralleliz-
able). However, for accurate results, the basis sets in the
CASSCF//CASPT2 calculations should be increased.

Finally, it is most likely important to sample many
different conformations of the surrounding protein (and the
chromophore). This can be easily done with molecular
dynamics simulations. However, the present results indicate
that the properties should be recalculated for each new
conformation of the protein, at least for residues within 10
Å of the chromophore. However, much time can be saved
by using the polarizable Amber 2002 force field for residues
outside this distance or by calculating their properties with
the HF/6-31G* method (which takes ∼15 CPU days for the
whole protein). In future publications, we will test such an
approach.
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(1) Öhrn, A.; Karlström, G. Mol. Phys. 2006, 104, 3087–3099.

(2) Pierloot, K.; De Kerpel, J. O. A.; Ryde, U.; Roos, B. O. J. Am.
Chem. Soc. 1997, 199, 218–226.

(3) Rajamani, R.; Gao, J. J. Comput. Chem. 2002, 23, 96–105.

(4) Yamada, A.; Kakitani, T.; Yamamoto, S.; Yamato, T. Chem.
Phys. Lett. 2002, 366, 670–675.

(5) Hayashi, S.; Ohime, I. J. Phys. Chem. B 2000, 104, 10678–
10691.

(6) Hayashi, S.; Tajkhorshid, E.; Pebay-Peyroula, E.; Royant, A.;
Landau, E. M.; Navarro, J.; Schulten, K. J. Phys. Chem. B
2001, 105, 10124–10131.

(7) Hayashi, S.; Tajkhorshid, E.; Schulten, K. Biophys. J. 2002,
83, 1281–1297.

(8) Fujimoto, K.; Jun-ya, H.; Hayashi, S.; Shigeki, K.; Nakatsuji,
H. Chem. Phys. Lett. 2005, 414, 239–242.

(9) Hoffmann, M.; Wanko, M.; Strodel, P.; König, P. H.;
Frauenhiem, T.; Schulten, K.; Thiel, W.; Tajkhorshid, E.;
Elstner, M. J. Am. Chem. Soc. 2006, 128, 10808–10818.

(10) Coto, P. B.; Strambi, A.; Ferré, N.; Olivucci, M. Proc. Natl.
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(51) Söderhjelm, P.; Krogh, J. W.; Karlström, G.; Ryde, U.; Lindh,
R. J. Comput. Chem. 2007, 28, 1083–1090.

CT800459T

658 J. Chem. Theory Comput., Vol. 5, No. 3, 2009 Söderhjelm et al.
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Abstract: In the absence of structural knowledge on the target protein, the bound ligand
conformer (BLC) can be constructed approximately by an indirect drug-design approach that
uses a set of ligands binding to the same target. Once the bound ligand conformer (BLC) is
known, different strategies of drug design can be pursued. The indirect drug-design approach
of the present study is based on the assumption that a set of ligands with chemically different
architecture binding to the same target protein carry hidden information of their corresponding
true BLCs. It is shown how this information can be extracted by pairwise flexible structure
alignment (FSA) using molecular dynamics (MD) simulations with attractive intermolecular
interactions that derive from the molecular similarity of the ligands and allow the ligands to adopt
the same space. The FSA approach is performed with a newly designed module overlap in the
experimental CHARMM-29a1, which soon will become publicly available. Combining the
conformations obtained from FSA of different ligand pairs yields consensus ligand conformers
(CLCs) that should be similar to the BLCs. This procedure was validated on HIV-1 protease
(HIV-P), where at present 44 crystal structures with bound ligands of sufficiently diverse chemical
composition are available. The FSA approach identifies four different clusters of HIV-P BLCs.
These clusters are consistent with the H-bond patterns of the ligands bound to HIV-P in the
crystal structures exhibiting four different binding modes. The cluster-specific CLCs are indeed
very similar (rmsd ≈ 2 Å) to the corresponding BLCs from the crystal structure, demonstrating
the feasibility of the present approach.

Introduction

Fighting diseases more effectively requires an increased effort
on the design of new drugs. Rational drug design, a major
tool in the development of new drugs, is a challenging task
for structural, chemical, and computational biology. Most
of the known theoretical approaches to drug design are
structure-based direct methods, such as docking,1-6 which
employ knowledge of the target structure and the binding

pocket. When the target structure is unknown, purely ligand-
based indirect drug design is still possible in case several
ligands of chemically different architecture are known to bind
to the same target.6-11 One indirect drug design approach
is the quantitative structure-activity relationship (QSAR).12-17

QSAR relates variations in drug activity to changes in
chemical composition, characterizing the drugs by suitable
molecular descriptors.18-20 Specific descriptors characteristic
for active molecules, the so-called pharmacophores,21-24 are
used in virtual screening studies to classify drugability of
molecules from a given database.25-31 A variant is 3D-
QSAR, which employs information of the spatial arrange-
ment of the ligand components32-35 and may also use
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information of the binding pocket.33,36 However, in the latter
case the QSAR approach is no longer indirect. Another 3D-
QSAR approach is comparative molecular field analysis
(CoMFA),33,34,37,38 which in addition to steric aspects is also
using electrostatic information of the ligands. More recently,
in the comparative molecular similarity indices analysis
(CoMSIA) steric and electrostatic aspects of ligands were
complemented by H-bond and hydrophobic patterns.38-41

However, in contrast to the present approach, these methods
generally do not yield coordinates of the target bound ligand
conformer (BLC).

Here, we report an indirect drug design approach, which
yields approximate BLC coordinates. We strictly use infor-
mation of the chemical architecture and composition of
ligands that bind to the same target (protein binding pocket).
Hence, we employ an approach of indirect drug design.
Structures cocrystallized with ligands are only used after the
study is completed to compare with the true BLC. In this
study, we exploit the conformational variability of a set of
ligands that bind to the same target protein to gain informa-
tion on the BLC. Flexible structure alignment (FSA) of these
ligands leads to consensus ligand conformers (CLC), which
need to be compatible with the diverse chemical architectures
of the ligands. Since these ligands bind in the same pocket
of the target protein, it is expected that they assume a
common geometry in the binding pocket (the true BLC)
which should be reflected by the CLCs obtained with FSA.
For a sufficiently large set of ligands with different chemical
architectures, the CLCs obtained by FSA should be similar
to the BLCs. Consequently, one can employ an ensemble of
these CLCs as an integral part of the pharmacophore to
design new drugs or to perform virtual screening on
molecular libraries.25-31 In earlier work we used a similar
FSA approach to align two proteins with equivalent func-
tion.42

The purpose of the present study is to test this FSA
approach by considering a protein-ligand model system
for which a large number of BLCs are known. Presently,
one of the best studied protein-ligand systems is HIV-1
protease (HIV-P) for which crystal structures with 44
chemically diverse bound ligands are available (see Table

1). The human immunodeficiency virus (HIV) is derived
from immature polyproteins that contain HIV-P.43 During
viral replication, HIV-P cleaves the peptide bonds of the
Gag and Pol polyproteins yielding the appropriately sized
active protein components of the mature virus. HIV-P is
proteolytically active as a homodimer possessing C2
rotational symmetry (Figure 1)44,45 with the binding cavity
extending symmetrically over both subunits of the
homodimer.

The FSA approach in this study is performed with a
newly designed module overlap in the modified CHARMM-
29a1, which is not yet publicly available. It employs MD
simulations of ligand pairs using a modified energy
function. This energy function employs conventional
intramolecular interactions, but instead of conventional
intermolecular interactions it uses energy terms based on
molecular similarity allowing molecular groups from
different ligands to attract each other in proportion to their
similarities and to adopt the same space. The measure of
similarity is based on three features: (i) volume/shape,
(ii) charge, and (iii) electrostatic potential. Although the
latter two features both refer to electrostatics, they differ
in a practical sense, since charges focus on short-range
while the electrostatic potential describes also long-range
aspects of electrostatic interactions. With this similarity-
based energy function, MD simulations of a ligand pair
with subsequent energy minimization yield superimposed
structures of ligand pairs in low energy CLCs, which can
be compared with the BLCs of the crystal structures.

In short, our working hypothesis is that in a pairwise FSA
ligands that bind to the same target protein but have different
intrinsic flexibility adopt CLCs close to the BLCs of the
crystal structures. Hence, where the true BLC is not available,
we can use the ensemble of these CLCs as integral part of
pharmacophores to find new drugs for specific targets by
virtual screening.25-31

Methods

Abbreviations. FSA, flexible structure alignment; RSA,
rigid structure alignment; HIV-P, HIV-1 protease; MD,
molecular dynamics; rmsd, root-mean-square deviation; BLC,
bound ligand conformer; CLC, consensus ligand conformer.

Overview. In parts A1 and A2 we describe how molecules
of completely different chemical composition can be char-
acterized and their similarity measured. In part B we
introduce the set of test data for HIV-P, for which the
structures of 44 cocrystallized ligands are available. In part
C we describe the general methodology and the modified
energy function which is the basis of the FSA approach. In
part D the procedure for structure alignment is described. It
comprises preparation of ligand structures for MD simulation
(part D1), performance of the FSA (part D2), and generation
of the CLCs (part D3). Technical details are given respec-
tively in parts S2, S5, and S9 of the Supporting Information.

A1: Estimating Molecular Similarity. The concept of
molecular similarity, originally introduced by Carbo to
compare charge densities Fa(rb) and Fb(rb) of molecules a and
b, respectively, and known as the Carbo Index (CI),46,47 is
defined by

Figure 1. Crystal structure of HIV-1 protease55 with the HIV-P
ligand L10 (see Table 1) as a ball and stick model. The
homodimer is represented as rubber band model possessing
a C2 rotational symmetry with the rotation axis oriented
vertically in the drawing plane. The binding pocket extends
over both monomers.
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CI(a,b))
∫ Fa( rb)Fb( rb)d rb

(∫ Fa
2( rb)d rb)1/2(∫ Fb

2( rb)d rb)1/2
(1)

If charge densities of molecules a and b are identical in
shape but differ in magnitude, then Fa(rb) ) cFb(rb), where
c being an arbitrary positive constant, yields CI(a,b) ) 1.
Hence, CI quantifies similarities in shape but not in magni-
tude. An alternative definition of molecular similarity, the
Hodgkin Index (HI)

HI(a,b))
2∫ Fa( rb)Fb( rb)d rb

∫ Fa
2( rb)d rb+∫ Fb

2( rb)d rb
(2)

was proposed by Hodgkin and Richard.47-49 In contrast to
the CI, the HI is sensitive to both shape and magnitude of
the density distributions Fa and Fb. Both similarity indices
vary between +1 and -1, extremes which correspond to
identity and complementarity, respectively. The values of
the similarity indices CI(a,b) and HI(a,b) are identical if
∫Fa

2drb) ∫Fb
2drb but generally |CI(a,b)| > |HI(a,b)|.

A2: Features Characterizing Molecules. We use a
combination of three different features to characterize the
structure of molecules. These are shape and volume,
distribution of atomic partial charges, and electrostatic
potential. The latter two features are related, since they both
are based on electrostatics, but charges focus on the short-
range aspect of electrostatics only, while the electrostatic
potential also considers long-range contributions.

To describe shape and volume of a molecule, we represent
its atoms (m) by three-dimensional Gaussian distribution
functions gm(rb)50,51

gm( rb))
√Vm

σm
3/2π3/4

exp(-( rb- rbm)2

2σm
2 ) (3)

where Vm is the van der Waals (vdW) volume of atom m,
rbm is the position of the center of atom m, σm is the width of
the Gaussian accounting approximately for the atomic radius
Rm ≈ σm. We normalized gm(rb) to yield for the self-overlap
the volume of atom m, i.e., ∫gm

2(rb)drb ) Vm. The volume
common to atoms m and n is given by the overlap integral

Smn )∫ (gm( rb)gn( rb))d rb) √VmVn( 2σmσn

σm
2 + σn

2)3/2

exp(-( rbm - rbn)
2

2(σm
2 + σn

2) ) (4)

A molecule is represented as the sum of gm(rb) correspond-
ing to its individual atoms. The similarity of a pair of
molecules can then be calculated as the overlap integral of
the molecular distribution functions. The approach to estimate
molecular similarity based on atom-centered Gaussians is
not restricted to volume and shape similarity52 but can be
applied to any atom based molecular property. Accordingly,
a molecular distribution function referring to property P of
molecule can be defined as the sum of gm

(P)(rb) referring to
the corresponding atomic property P. Hence, for property P
(vol, charge, epot for volume/shape, charge, electrostatic

potential, respectively) a molecule a, which consists of na

atoms, is described by the distribution function

Fa
(P)( rb)) ∑

m)1

na

gm
(P)( rb) (5)

Estimation of the similarly between two molecules a and b
with respect to property P requires computation of the
overlap integral of the two corresponding molecular distribu-
tion functions Fa

(P)(rb) and Fb
(P)(rb)

S(P)(a,b))∫ Fa
(P)( rb)Fb

(P)( rb)d rb)∑
m

na

∑
n

nb

Smn
(P) (6)

Hence, the atom-based form of HI that measures the
similarity with respect to property P for a pair of molecules
(a, b) is given by

HI(P)(a,b)) 2S(P)(a,b)

S(P)(a,a)+ S(P)(b,b)
(7)

where S(P)(a,b) is the overlap integral for the molecule pair
(a, b) and S(P)(a,a) and S(P)(b,b) are the self-overlaps of
molecules a and b, respectively.

The result of volume overlap of two atoms n and m yields,
in analogy to eq 4

Smn
(vol) )wm

(vol)wn
(vol)( 2Rm

(vol)Rn
(vol)

(Rm
(vol))2 + (Rn

(vol))2)3/2

exp( -( rbm - rbn)
2

2(kRm
(vol))2 + 2(kRn

(vol))2) (8)

where the weighting factors wn
(vol) replace the volume factors

in eq. (4), Rn
(vol) is the effective atomic radius for the volume

of atom n and k is a factor that scales all atomic radii (i.e.,
k determines the degree of localization of the Gaussians).
The default values of k and wn

(vol) are unity. Likewise, for
charge overlap between atoms m and n with atomic partial
charges qm and qn (given in units of the elementary charge)
and Rn

(charge), the effective atomic radii for the charges, we
have

Smn
(charge) ) qmqn( 2Rm

(charge)Rn
(charge)

(Rm
(charge))2 + (Rn

(charge))2)3/2

exp( -( rbm - rbn)
2

2(kRm
(charge))2 + 2(kRn

(charge))2) (9)

where the charges of the atom pairs enter as first power
instead of square root to enhance the similarity measure. In
the present application we use Rn

(charge) ) Rn
(vol).

As similarity measure for the electrostatic potentials of
two charges qm and qn at positions rbmand rbn, respectively,
we use

Smn
(epot) ) qmqn exp(-γ(epot)| rbm - rbn|) (10)

where γ(epot) is a range parameter governing the length scale
over which the electrostatic potentials of atoms m and n are
compared (a large γ(epot) corresponds to short distances, the
default value is unity). A derivation of the expression for
the electrostatic potential overlap, eq 10, is given in the part
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S1 of Supporting Information. Although charge distribution
and electrostatic potential are derived from the same set of
atomic partial charges, they focus on different aspects of
these charges. The charge distribution considers the similarity
at short distances accounting for direct interactions of the
ligands with atoms in the binding pocket like hydrogen bonds
and salt bridges, while the electrostatic potential considers
also the long-range aspect of the charge distribution.

A similarity measure considering contributions from all
three properties (volume/shape, charge, and electrostatic
potential) is the weighted sum of the individual HI yielding
the combined HI

HIcombined )
wvol

wsum
HIvol +

wcharge

wsum
HIcharge +

wepot

wsum
HIepot (11)

where wsum ) wvol + wcharge + wepot; HIvol, HIcharge, and HIepot

are the individual Hodgkin indices and wvol, wcharge, wepot

(default values are unity) are the relative weights for volume/

shape, charge, and electrostatic potential overlap, respec-
tively. The resulting similarity index HIcombined can vary
formally between -1 and +1, but in practice it will not come
close to -1. As the value of HIcombined approaches unity the
similarity of the two molecules increases.

B: HIV-1 Protease Ligand Test Set. To test whether FSA
of ligands with the same function can provide information
on the ligand conformers in the binding pocket of the target
protein, we consider HIV-1 protease (HIV-P), for which
X-ray structures of 44 different HIV-P ligand complexes are
available (listed in Table 1). Of these 39 are HIV-P inhibitors
(less flexible than peptides), and the remainder (L30-L34)
are natural substrate oligopeptides53 that are cleaved by
HIV-P during viral replication. Although the HIV-P binding
cavity possesses C2 rotational symmetry (Figure 1),44,45 only
one inhibitor (L19) exhibits the same symmetry while five
of the inhibitors (L6, L10, L15, L21, L28) possess mirror
symmetry. All the remaining HIV-P ligands, including the
natural substrate oligopeptides, possess no symmetry. These
inhibitor substrates, cocrystallized with HIV-P, are available
in the protein data bank (PDB).54

Because of the C2 symmetry of the HIV-P binding pocket,
several ligands (L3, L10, L14, L25, L26, L35, L40, L42)
appear in the crystal structures in two opposite orientations
with slight variations in the conformation. For the analysis
of the H-bond pattern of the ligand with the protein, we used
both crystal structures (see Table 2, discussed in part F of
Results and Discussion). For analyses of HIV-P ligand
coordinates, we used only the first of the two alternative
ligand orientations listed in the PDB data file. This is
justified, since the rmsd between alternate conformers of the
same HIV-P ligand overlaid with the Kabsch algorithm56,57

are generally small (see Table SIV).
C: Maximizing the Similarity of Molecules. In the search

for CLCs of pairs of chemically disparate molecules, we
monitored the similarity measured by HIcombined, eq 11. As
the conformers of the pair of molecules are being adjusted
to maximize their similarity, each of the two molecules must
at the same time assume a reasonable low-energy structure.
To achieve a compromise between these two criteria, we
constructed an effective potential energy function

E(a,b))Eintra(a)+Eintra(b)- eSHIcombined(a,b) (12)

that simultaneously accounts for both. The intramolecular
contributions to E [Eintra(a), Eintra(b)] are taken to be the
true physical ones (i.e., bonded interactions depending on
bond length, bond angle, torsions; and nonbonded interac-
tions depending on van der Waals and Coulomb terms
within the same molecule). The true intermolecular
contribution is replaced by a nonphysical term proportional
to the combined Hodgkin index, where the parameter eS

is set so that all three terms in eq 12 are of comparable
magnitude. Different values of es are used during the FSA
approach as given in part S2, S5, and S9 of Supporting
Information. The gradient of this effective potential energy
function can be used for MD simulations, which will yield
CLCs of the molecule pair under consideration. In these
combined CLCs both molecules are structurally aligned
in a low energy conformation such that similar parts of
the two molecules are superimposed.

Table 1. HIV-1 Protease (HIV-P) with the 44 Ligands
Considered in This Study

no. ligand (inhibitor/substrate)a PDB id resol (Å)

L1 TMC114 or UIC-94017 (017) 1T3R 1.20
L2 AQ148 (ARQ) 3AID 2.50
L3 ABT-378 (AB1) 1MUI 2.80
L4 SB203386 (IM1) 1SBG 2.30
L5 BOC-PHM-TYR-ILE-GLY 1MTR 1.75
L6 BMS-182193 1ODW 2.10
L7 L-739,622 (3IN) 2BPZ 2.50
L8 L-738,317 (1IN) 2BPW 2.80
L9 L-735,524 (MK1) 2BPX 2.80
L10 L-700,417 (VAC) 4PHV 2.10
L11 KNI-272 (KNI) 1HPX 2.00
L12 SB203238 (GAN) 1HBV 2.30
L13 AHA455 (A1A) 2BQV 2.10
L14 UCSF8 (THK) 2AID 1.90
L15 AHA006 (NMB) 1AJV 2.00
L16 U100313 (U02) 2UPJ 3.00
L17 TPV 1D4S 2.50
L18 AKC (AKC4P_133A) 2BB9 1.35
L19 HOE/BAY 793 (BAY) 1VIJ 2.40
L20 TS-126 (IPF) 2A1E 1.30
L21 A-74704 9HVP 2.80
L22 A-84538 (RIT) 1HXW 1.80
L23 A79285 (A85) 1DIF 1.70
L24 CGP 53820 (C20) 1HIH 2.20
L25 GR137615 (G37) 1HTG 2.00
L26 ROC 1FB7 2.60
L27 KI2-PHE-GLU-GLU- NH2 1NH0 1.03
L28 SD146 (146) 1QBT 2.10
L29 MSA367 (MS3) 1EC3 1.80
L30 p1-p6 substrate 1KJF 2.00
L31 MA-CA substrate 1KJ4 2.90
L32 CA-p2 substrate 1F7A 2.00
L33 p2-NC substrate 1KJ7 2.00
L34 RT-RH substrate 1KJG 2.00
L35 U89360E (U0E) 1AXA 2.00
L36 MVT-101 4HVP 2.30
L37 JG-365 7HVP 2.40
L38 U-85548E 8HVP 2.50
L39 LP-130 (LP1) 1ODY 2.00
L40 acetyl-pepstatin 5HVP 2.00
L41 CH2-CBG-Asn-Tyr-CH2-Pro-ILE-Val-NH2 1CPI 2.05
L42 SKF108738 (HEF) 1HEF 2.20
L43 U75875 1HIV 2.00
L44 SDZ283-910 1A8G 2.50

a Five ligands (L30-L34) are natural substrate oligopeptides. All
other ligands listed in the table are inhibitors.

662 J. Chem. Theory Comput., Vol. 5, No. 3, 2009 Juneja et al.



D: Computational Procedures.
D1: Model Preparation of Ligands and Generation

of Initial Conformers. To avoid the bias of crystal structure
information of the ligand conformers used in this study
rigorously, we were choosing the initial conformers for the
MD simulations to differ as much as possible from the
conformers they adopt in the HIV-P binding pocket. The
average rmsd of the initial conformers relative to the BLCs
is 4.36 Å. More details are given in part S2 and Figure S1
and S2 of the Supporting Information.

D2: Pairwise Flexible Structure Alignment (FSA). The
alignment of a pair of flexible molecules is performed by
MD simulation using the effective potential energy function,
eq 12. Seven hundred twenty different starting arrangements
of the ligand pairs were used. The most similar ligand pair
conformer is extracted from the final 80 ps of 105 ps
trajectory runs at room temperature and used for further
analysis, as detailed in part S5 of the Supporting Information.
The CPU time for single 105 ps trajectory is 85 min on AMD
Athlon 2.2 GHz.

D3: Generating Consensus Ligand Conformers
(CLCs). Since the pairwise FSA of the 44 HIV-P ligands
yields for each ligand 43 different conformers, it is necessary
to determine consensus ligand conformers (CLCs) from them.
Alternatively we could have used multiple FSA considering
all HIV-P ligands in a single alignment attempt and thus
obtained CLCs directly. However, in such an approach one
would assume that all 44 HIV-P ligands obey the same
binding mode and give equivalent conformers. But, as a result
of this study we can show that the 44 HIV-P ligands actually
exhibit four different binding modes. Hence, the direct use
of a multiple FSA approach would obscure this information
and yield less than optimum results. Pairwise FSA keeps
information on different binding mode and allows one to
cluster the ligands according to mutual similarity of their
conformers. After this analysis, CLCs are computed for each
of the similarity clusters, as explained in part S9 of the
Supporting Information.

Results and Discussions

Overview. Before using the concept of FSA to generate
conformers of HIV-P ligands that can be related to the
corresponding bound ligand conformers (BLCs) fitting in the
HIV-P binding pocket, we carried out a number of studies
for each of the 44 HIV-P ligands independently. In part A
below, we discuss (i) how much ligand conformers can
deviate from the corresponding BLCs, (ii) how close ligand
conformers can come by chance to their corresponding BLCs
through equilibrium fluctuations during a short MD simula-
tion at room temperature, and (iii) how much the ligand
conformers of such an MD simulation can deviate on average
from the corresponding BLCs. In part B, we analyze the
similarity of ligand conformers adopted in the HIV-P binding
pocket of the crystal structure. As a typical result we
compared reference ligand L1 with all other ligands Lx in
the main text. The comparison of the other ligand pairs is
found in Figure S4 of the Supporting Information. In part
C, we examine in detail the conformers of reference ligand

Table 2. HIV-P H-Bond Pattern

Column 1: ligand number; Row 1: polypeptide chain A or B of
HIV-P; Row 2: formal numbering of the H-bond partner in HIV-P
(an H-bond is formed if the participating non-hydrogen atoms
are closer than 3.5 Å); Row 3: specification of H-bond partners
in format (atom_name)-(amino_acid_type)-(amino_acid_number)-
(backbone(B)/side_chain(S)). For mutant HIV-Ps, the residues 1
(Asn replaces Asp) and 4 (Val replaces Gly) possess different side
chains. From these, B1, A4, and B4 are H-bonds with some HIV-P
ligands as indicated. Each column has a color code referring to
the H-bond partner in HIV-P. Each line characterizes the H-bond
pattern for a specific HIV-P ligand labeled in column 1. For the
ligands (L3, L10, L14, L25, L26, L35, L40, L42), alternate
conformations were found in the HIV-P crystal structures. For
these ligands, both H-bond patterns are given in subsequent lines.
These cases are highlighted by black boxes as for instance for
ligand L3. A filled cell denotes an H-bond of the ligand with the
particular group of HIV-P; the digits (1 or 2) count the number of
H-bonds formed between the ligand and this group. Empty cells
denote absence of possible H-bonds. H-bond patterns persistent
for a group of ligands are highlighted by ellipses. Red (blue)
ellipses denote strict absence (presence) of specific H-bonds.
Green ellipses indicate dominant occurrences of a particular
H-bond. The five substrate HIV-P ligands (L30-L34) belong to the
red cluster. The clustering of the HIV-P ligands is based on the
similarity of the H-bond pattern and indicated by the color code in
column 1. A detailed description of H-bond pattern is given in
Table SV.
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L1 resulting from FSA with all other HIV-P ligands and
compared the computed ligand conformers with the con-
former adopted by ligand L1 in the crystal structure. Part D
provides an overview of the pairwise FSA results considering
all combinations of ligand pairs, and part E contains an
analysis of the degrees of similarities between the different
pairs of HIV-P ligands computed by the FSA approach.
These results are clustered to assign the HIV-P ligands to
different classes (part E) using solely the FSA data without
consideration of the crystal-structure information. The bind-
ing modes of the HIV-P ligand conformers in the crystal
structures based on the H-bond pattern were analyzed in part
F and compared with the results of the cluster analysis based
on the FSA results. In part G we use the results of ligand
classifications based on the FSA to construct consensus
ligand conformers (CLC) for each ligand cluster separately,
as described in part D3 of Methods. Finally, in part H we
visualize the CLCs of the four obtained HIV-P ligand
clusters.

A: Comparing HIV-P Ligand Conformers Obtained
by MD Simulations with BLCs from Crystal Structures.
First, we examined how close and how distant HIV-P ligand
conformers may come by chance to the corresponding crystal
structure conformers if conventional MD simulations are
performed for each ligand separately in vacuo using the
CHARMM energy function. For this purpose we performed
MD simulations of 225 ps (including 5 ps for heating) at
constant energy (T ≈ 300 K), employing only the last 100
ps of the trajectory to allow for sufficient equilibration. In
Figure 2a the RMSDs of these ligand conformers relative to
the crystal structures are displayed. The RMSDs of ligands
1 to 18 (displayed in the left half of Figure 2a) are smaller
than that of 19 to 44. This correlates with the size of the
ligands (see Table SII of the Supporting Information), since
larger ligands generally lead to larger RMSDs. For the
energy-minimized starting structures of the MD simulation,
the conformers with the largest deviation from the crystal
structures were selected from 100 randomly generated
structures (see part D1 in Methods). The RMSDs of these
selected conformers are in the range 4-5.5 Å, larger than
the time-averaged RMSDs (about 4 Å) and the minimum
RMSDs (about 3 Å) occurring during the MD simulation
runs. This range of rmsd values clearly shows that the HIV-P
ligands spontaneously adopt conformers close to the con-
former in the HIV-P binding pocket only rarely. Hence, MD
simulations of HIV-P ligands performed independently from
information of the HIV-P binding pocket generally do not
yield conformers close to the BLCs. The actual variation in
ligand conformers between crystal structure, average structure
of an MD simulation of the individual ligand, and the CLC
from the FSA approach as described later in detail in
connection with Figure 7 is displayed for ligand L1 in Figure
2b. Analogue figures for all other 43 HIV-P ligands are
shown in Figure S9 of the Supporting Information.

B: Analysis of the Similarity of HIV-P Ligand Con-
formers in the Crystal Structure. For the FSA method to
be successful, there must be significant similarities among
the BLCs from the 44 different HIV-P ligands. To meet this
condition, we first performed pairwise rigid structure align-

ments (RSA) of the BLCs. This was done in two different
ways: (i) Protein structure-based RSA, in which the ligands
were ignored and HIV-Ps from the 44 crystal structures were
aligned pairwise by the Kabsch algorithm.56,57 The resulting
translational and rotational transforms were then used to
superimpose the ligands. For these RSA, the combined

Figure 2. Part a: HIV-P ligand conformers obtained by MD
simulations for all 44 HIV-P ligands considered using the last
100 ps of a 225 ps trajectories in vacuo at constant energy
(T ≈ 300 K). The RMSDs of the ligand conformers are given
relative to the crystal structures. They refer to the starting
conformers of the MD simulations (top line, which coincides
with middle line of Figure S2), the conformers with minimum
deviation to the crystal structures obtained by MD simulation
(bottom line), and the average conformers (middle line). The
ligand numbers Lx at the abscissa are defined in Table 1;
their background colors refer to the four clusters of ligands
classified according to structure similarity as discussed later
in connection with Figure 6. Part b: Chemical architecture of
HIV-P ligand L1 (top) and three-dimensional structures (bot-
tom) of the bound ligand conformer from the crystal structure
(yellow), average structure from MD simulation of ligand L1
alone (blue) with 2.95 Å rmsd from crystal structure, and
consensus ligand conformer (CLC) after FSA (red) as de-
scribed in connection with Figure 7 with 1.65 Å rmsd.

664 J. Chem. Theory Comput., Vol. 5, No. 3, 2009 Juneja et al.



Hodgkin indices HIcombined were generally between 0.4 and
0.5 (red circles in Figure 3) for all HIV-P ligand pairs
involving the reference ligand L1 and ligands L2-L44. (ii)
Ligand conformer-based RSA, in which the torsion angles
of the ligands were fixed by use of stiff torsion potentials
(as described in the CHARMM script ScriptFSA in part S8
of the Supporting Information) to obtain approximately rigid
ligand models. With these rigid ligand models, the FSA
procedure was applied to all HIV-P ligand pairs involving
the reference ligand L1 and all other ligands L2-L44. The
resulting HIcombined values (green diamonds in Figure 3)
(essentially between 0.5 and 0.6) are larger than the values
obtained by the protein structure-based RSA. Results of RSA
for all other HIV-P ligand pairs, which are qualitatively
similar, are given in Figure S4 of the Supporting Information.

C: Pairwise Flexible Structure Alignment of Refer-
ence Ligand L1 with all HIV-P Ligands. FSA of HIV-P
ligands were performed for all 946 ) (44 × 43)/2 possible
ligand pairs. The results for 43 ligand pairs involving the
reference ligand L1 and all other ligands are displayed in
Figure 3. These results are typical of those for all the other
combinations of ligand pairs, which are shown in 43
additional graphs in Figure S4 of the Supporting Information.
The HIcombined for the initial conformers of the ligand pairs
used in the MD simulations to perform the FSA are displayed
as gold stars in Figure 3. These low HIcombined values,
generally between 0.3 and 0.4, correspond to ligand con-
formers that are significantly dissimilar from the BLCs.
During the MD simulation the similarity increases, as
indicated by HIcombined values that vary between 0.5 and 0.65
(blue triangles in Figure 3) and are often considerably larger
than those of the starting conformers and also slightly larger
than those obtained by ligand conformer-based RSA of the
HIV-P ligand conformers of the crystal structures (green
diamonds in Figure 3). It is encouraging that the dependence
of the HIcombined on the ligand Lx is similar for the conformer
pairs (L1, Lx) obtained by FSA (blue triangles) and from
the crystal structures (green diamonds), although for the latter
the HIcombined are slightly smaller.

The open symbols in Figure 3 refer to comparisons of the
L1 conformer from the crystal structure with L1 conformers
obtained by FSA of L1 with the 43 other HIV-P ligands.
Since different conformers of the same L1 ligand were
considered in this comparison, both rmsd (open brown
triangles, right scale in Figure 3) and HIcombined (open cyan
diamonds, left scale in Figure 3) were evaluated. It is
noteworthy that the RMSDs relative to the L1 crystal-
structure conformer are all close to 2 Å (open brown
triangles, right scale), which is about as small as the
minimum rmsd () 2.3 Å) obtained from the last 100 ps of
a vacuum MD simulation of L1 at room temperature (see
Figure 2a) and is considerably smaller than the rmsd () 3.9
Å) from the initial conformer used for the FSA approach
(black solid line in Figure 3). Parallel with small RMSDs
we observed HIcombined values generally greater than 0.5 when
comparing the L1 conformer from the crystal structure with
the L1 conformers obtained by FSA with the 43 other HIV-P
ligands (open cyan diamonds). These results, which are
typical of all ligand pairs (Lx, Ly) (see Figure S4 in the

Supporting Information), indicate the success of the FSA
approach in generating ligand conformers that are close to
the corresponding BLCs.

Analyzing the dependencies of HIcombined in Figure 3 with
respect of the different types of clusters labeled by the
background color code of the ligand numbers at the abscissa,
we observe significant lower similarities of L1 with the red
labeled ligands. This is typical for all blue labeled ligands
like L1, which are members of the same ligand cluster. As
will be seen subsequently (in part E), this deviation can be
explained by the large dissimilarity of the ligands belonging
to the blue cluster relative to the ligands of the red cluster.
The cluster analysis shows that these two ligand clusters are
the most dissimilar and adopt different binding modes in the
HIV-P binding cavity.

D: Pairwise Alignment Overview of Data from all
HIV-P Ligand Pairs. The data for all 946 ) 44 × 43/2
pairs of HIV-P ligands yield 44 diagrams like the one of
Figure 3, which displays the data of all 43 ligand pairs
involving Ly ) L1 as reference ligand. Since these diagrams
provide too many details, they are deferred to the Supporting

Figure 3. Results of pairwise structure alignment of the HIV-P
reference ligand L1 with 43 other HIV-P ligands Lx, x ) 2,
3, ... 44, listed on the abscissa. Ligands are defined in Table
1. The left scale refers to HIcombined, eq 11, the right scale refers
to RMSDs (in reverse direction) given relative to the crystal
structures. For the sake of completeness, we formally as-
signed HIcombined ) 1 and rmsd ) 0.0 aligning ligand L1 with
itself. HIcombined (left scale) is displayed for ligand conformer-
based RSA using ligand conformers from the crystal structures
(green diamonds), for protein structure-based RSA in which
the HIV-P crystal structures were aligned by the Kabsch
algorithm56,57 (red circles), for initial conformers of the HIV-P
ligands used for the MD simulation of FSA (gold stars), for
FSA results of ligand pairs (L1, Lx) consisting of the reference
L1 and all other ligands Lx of HIV-P (blue triangles), for L1
ligand conformer in the crystal structure with the L1 conform-
ers obtained by pairwise FSA with all other 43 HIV-P ligands
Lx (open cyan diamonds), and the corresponding rmsd (right
scale) (open brown triangles). The rmsd relative to the crystal
structure of the L1 conformer used as starting conformer in
pairwise FSA (solid black line); rmsd of the same L1 conformer
after energy minimization (dashed black line). N numbers on
the abscissa refer to ligands designated in Table 1; their
background colors refer to the four clusters of ligands clas-
sified according to structural similarity as discussed later in
connection with Figure 6.

Ligand Structure Alignment by Molecular Dynamics J. Chem. Theory Comput., Vol. 5, No. 3, 2009 665



Information (Figure S4). Figures 4 and 5 contain an overview
and summary of these results displaying maxima, minima,
and averages of HIcombined and rmsd for HIV-P ligand pairs
formed between a particular reference ligand Ly (denoted at
the abscissa) and the 43 other ligands (Lx). Parts a and b of
Figure 4 show maxima, minima, and averages [referring to
ligand pairs (Ly, Lx) with the average running over Lx] of
HIcombined obtained from the BLC of the HIV-P crystal
structures using protein structure-based (Figure 4a) and ligand
conformer-based (Figure 4b) RSA (see part B of Results and
Discussion).

The maxima of HIcombined obtained by RSA, which are
around 0.6 and 0.8 for the protein structure-based and
ligand conformer-based alignment of the BLC, respec-

Figure 4. Maxima (magenta), minima (black), and averages
(cyan) of HIcombined, eq 11, from HIV-P ligand pairs formed
between specific reference ligands Ly displayed on the
abscissa and other 43 HIV-P ligands. N numbers on the
abscissa refer to ligands listed in Table 1. (a) HIcombined

obtained by protein structure-based RSA of HIV-P ligand
conformers form the crystal structures (corresponding to red
circles in Figure 3 and Figure S4); (b) HIcombined obtained by
ligand conformer-based RSA of HIV-P ligand conformers from
the crystal structures (corresponding to green diamonds in
Figure 3 and Figure S4); (c) HIcombined obtained by FSA of
HIV-P ligand pairs (corresponding to blue triangles in Figure
3 and Figure S4). The numbers at the maxima (magenta) and
minima (black) of HIcombined in parts b and c refer to the ligand
numbers Lx which, combined with the reference ligand Ly,
yield the maximum and minimum of HIcombined, respectively.

Figure 5. Comparison of ligand conformers obtained by
pairwise FSA with conformers from crystal structures. Maxima
(magenta), minima (black), and averages (cyan) of HIcombined

(a) and rmsd (b) for ligand conformers formed between
specific reference ligand conformers Ly (the BLCs) displayed
on the abscissa and other 43 HIV-P ligands Lx (obtained by
FSA). N numbers at maxima (magenta) of HIcombined in part a
and minima (black) of rmsd in part b refer to ligand number
Lx which by pairwise FSA yields the conformer of ligand Ly
(marked on the abscissa) most similar to the crystal structure.
Note that the data points at Ly ) L1 use the information from
the curve (open cyan diamonds) in Figure 3. N numbers on
the abscissa identify ligands listed in Table 1.
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tively, indicate a large degree of similarity. On the other
hand, the minima of HIcombined around 0.3 and 0.4 for
protein structure-based and ligand conformer-based align-
ment, respectively, indicate low similarity. The average
of HIcombined is typically the mean of the maxima and
minima, which suggests that for a given HIV-P reference
ligand there are generally ligands with high and with low
degrees of similarity. As we will see later, this large
variability in HIV-P ligand conformers is a trait of HIV-P
ligands that possess different binding modes.

In parts a and b of Figure 4 only experimental data on the
similarity of the HIV-P ligand conformers of the crystal
structures are analyzed, while in part c only computational
data on ligand conformers obtained by FSA are compared.
Comparing the dependencies of HIcombined on the reference
ligand Ly in parts b and c, one observes a nearly quantita-
tive agreement in particular for the maximal and the average
HIcombined. This suggests a close relationship between the
ligand conformers obtained by FSA and the corresponding
ligand conformers in the HIV-P crystal structures, although
the former did not use any information from the crystal
structures. The numbers at the maximal (minimal) HIcombined

in parts b and c of Figure 4 label the HIV-P ligand Lx that
is most similar (distant) to the reference ligand Ly on the
abscissa. That these numbers for the experimental (Figure
4b) and computational data (Figure 4c) often agree suggests
again close similarity between experimental and computa-
tional ligand conformers. Furthermore, with few exceptions
these numbers possess the same color as the background
color of the reference ligand Ly from the abscissa which
shows that the ligand pairs with maximal (minimal) similarity
belong to the same (most distant) cluster and therefore
possess the same (very different) binding mode in the HIV-P
binding pocket.

The ligand pairs with minimum similarity in Figures 4b
and 4c are the ligands L30, L2, L14. This agrees with the
results of the cluster analysis (Figure 6, see part E), which
demonstrates that L30 is most distant from ligands of the
blue and green cluster, L2 is most distant from ligands of
the orange cluster, and L14 is most distant from ligands of
the red cluster. This is a clear demonstration that the FSA
approach can indeed be used to generate ligand conformers
which are close to the BLCs.

A direct comparison between theory and experiment for
the HIV-P ligand conformers from crystal structures and from
pairwise FSA is given in Figure 5. Here, HIcombined (part a)
and rmsd (part b) are displayed as functions of the reference
ligand Ly for which ligand pairs with all other HIV-P ligands
were considered to evaluate averages, maxima, and minima.
The maxima of HIcombined vary roughly between 0.6 and 0.75,
and the minima of rmsd are generally below 2.0 Å, which
indicates high similarity within subsets of HIV-P ligands.
Simultaneously, the minima of HIcombined generally vary
between 0.4 and 0.5, and the maxima of rmsd between 3.0
Å and 4.0 Å, which demonstrates a low similarity between
subsets of HIV-P ligands possessing different binding modes.
The HIcombined (rmsd) are slightly higher (lower) for the
ligands of the first two clusters (on the left side of Figure 5,
marked by blue and green background colors) compared to

ligands of the other two clusters (orange and red background
colors). This behavior is likely due to the generally smaller
size of the HIV-P ligands in the first two clusters compared
with the ligands of the other two clusters. Table SII in the
Supporting Information, which exhibits the HIV-P ligand
structures, indicates the size differences. The numbers at the

Figure 6. Phylogenetic tree of HIV-P ligands generated by
T-REX59 based on the similarity measure HIcombined, eq 11,
obtained by FSA. Besides the tree structures the closeness
of the ligand symbols in the diagram is also a qualitative
measure of structure similarity. On the basis of similarity, four
clusters can be clearly discriminated. The background color
code reflects the results of an H-bond pattern analysis of the
crystal structures (Table 2). Small differences in the FSA
based cluster analysis appeared for the ligands L14 and L18
that appear to belong to the green cluster and for L28 that
belongs to the orange cluster. The five natural substrate
oligopeptides (L30-L34) belong to the red cluster. Note that
the color code denoting the ligands at the abscissa of Figure
2-5, 7 uses the results of the classification based on FSA as
displayed above.

Figure 7. Cluster specific HIV-P ligand CLCs obtained by
FSA using the cluster result from Figure 8. Combined Hodgkin
indices, HIcombined, eq 11, (left scale, squares) and RMSDs
(right scale, in reverse direction, triangles) of the CLCs
displayed relative to the ligand conformers in the crystal
structures. CLCs were generated without crystal structure
information, as explained in the Method part D3.
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maximal HIcombined in Figure 5a label the HIV-P ligand Lx,
which by FSA yields the Ly conformer (on the abscissa)
most similar to the crystal structure. Evidently FSA with
ligand pairs belonging to the same cluster yield the highest
similarity with the BLCs (see color code of ligand numbers
in Figure 5). The same applies to the minimal RMSDs in
Figure 5b.

E: Clustering HIV-P Ligands Based on Similarity
Obtained by FSA. The preceding analysis of HIV-P ligand
similarity suggests a heterogeneous set of ligands that may
involve different binding modes. To purse this idea, we
applied a cluster algorithm to explore the molecular similari-
ties which consider functional groups and the scaffold of
the ligands. The combined Hodgkin indices HIcombined, eq 11,
of all 43 × 44/2 ) 946 ligand pairs were evaluated by the
FSA approach. We used the inverse of the HIcombined as a
measure of the distance between ligands (see Table SVI of
the Supporting Information) to classify the ligands in
different clusters by the neighbor-joining cluster algorithm.58

We then used the results of this cluster algorithm to construct
a phylogenetic tree by the program T-REX.59 The resulting
tree, displayed in Figure 6, shows four distinct ligand clusters.
The smallest cluster (green, L14-L18) consists of five
members. Together with the second largest cluster with 13
members (blue, L1-L13), it harbors the HIV-P ligands of
smaller size. The third cluster contains 11 members (orange,
L19-L29), while the largest cluster, containing the natural

substrate oligopeptides, has 15 members (red, L30-L44).
The colored circles around L14, L18, and L28 highlight
differences in ligand classification derived from the H-bond
patterns of the HIV-P ligands in the crystal structures (see
part F, Table 2).

F: Classification of HIV-P Ligands Based on H-Bond
Patterns from Crystal Structures. We can use the informa-
tion from the crystal structures to classify HIV-P ligands.
For this purpose, we analyzed the H-bond patterns of the
HIV-P ligands, which have been discussed in numerous
publications.53,55,60-98 The binding affinities of these HIV-P
ligands are also available53,55,60-102 (see Table SV, Sup-
porting Information) and their correlations with the H-bond
patterns have been studied (Table SV), but no clear relations
were found.

In the present study H-bonds are assumed to be present if
the distances between the participating non-hydrogen atoms
are smaller than 3.5 Å. The HIV-P ligands are listed in Table
2 in four groups (blue, green, orange, red, except for the
outlier L14, which possesses a single H-bond and very low
binding affinity, Table SV) corresponding to the H-bond
patterns to which they belong. Using the same color code
as in Figure 6, which displays the clustering results based
on the FSA approach, Table 2 provides an abbreviated list
of H-bonds that are significant for the clustering of the
ligands. A complete list of the H-bonds formed between the
ligands and the HIV-P homodimer is given in Table SV of

Figure 8. Structure alignments of HIV-P ligands for four clusters found from pairwise similarity based on FSA (see Figure 6).
First row: protein structure-based RSA of ligand conformers in crystal structures. Second row: ligand conformer-based RSA
using ligand conformers from crystal structures. Third row: structure alignment of consensus conformers from pairwise FSA.
Last row: schematic representation of ligand conformers from protein structure-based RSA of first row. Circles indicate dominant
H-bond patterns found from analysis of crystal structures. Labels in circles refer to residue identified in Table 2. Red circles
indicate strict absence; blue circles strict presence of H-bonds; green circles dominant occurrences of H-bonds (circles obey
same color code as ellipses in Table 2).
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the Supporting Information. The H-bonds, which are most
relevant for discrimination between different groups of
ligands, are highlighted by elongated ellipses (red ellipses
for absence of possible H-bonds, blue ellipses for presence
of H-bonds, and green ellipses for dominant, but not
exclusive, occurrences of specific H-bonds).

For eight ligands (L3, L10, L14, L25, L26, L35, L40, L42)
crystal structures with two different ligand orientations are
available. In these cases, both H-bond patterns are given in
Tables 2 and SV. Except for L14 the H-bond pattern of these
ligands possesses mirror symmetry, which is due to the C2
symmetry of the HIV-P homodimer. L14 binds poorly,
exhibiting one or two H-bonds in the two orientations.

Comparing the four classes of HIV-P ligands obtained by
an analysis of the H-bond patterns (Table 2) with the clusters
resulting from the similarities of pairwise FSA, one finds
that the results of the two classifications are nearly identical
(Figure 6). If we exclude HIV-P ligand L14, which is a poor
binder, only two other ligands fall into similarity clusters
that differ from the results of H-bond classification. Ligand
L18 (L28) belongs to the blue (green) cluster according to
the H-bond pattern but belongs to the green (orange) cluster
based on FSA (Figure 6). Note that the ligands L15-L17,
L28 of the green cluster have a polar ring structure in the
center of the ligand scaffold in common, which induces a
specific H-bond pattern. In L18 the corresponding polar ring
in the ligand scaffold is off-center, giving rise to in a different
H-bond pattern, which accordingly places the ligand in the
blue cluster. The similarity of L18 to ligands of the blue or
green cluster is nearly equal (see Figure S6 of the Supporting
Information) with a slight preference for the green cluster.
This contrasts with L28, which, based on similarity, is too
large to fit into the green cluster of small ligands. Therefore,
according to FSA it is placed in the orange cluster, while
according to the H-bond pattern it should be placed in the
green cluster.

G: Cluster-Specific Consensus Ligand Conformers
Based on Pairwise FSA. For each of the 44 HIV-P ligands
considered, the pairwise FSA method yields 43 different
conformers. From these conformers one can derive CLCs
without using crystal structure information. Since four
different clusters of ligands were found based on pairwise
similarity (see Figure 6), a CLC can be derived for each
ligand Ly using only the Ly conformers obtained by pairwise
FSA with the other ligands belonging to the same cluster.
The procedure to generate such CLCs is described in part
D3 of Methods. The resulting values of HIcombined and RMSDs
of the CLCs with the BLC of the crystal structures are given
in Figure 7. The HIcombined based on the CLCs vary now
between 0.8 and 0.95. They are considerably larger than the
corresponding maximal HIcombined varying between 0.6 and
0.75 based on conventional FSA that disregards the results
of ligand classification (Figure 5a). The RMSDs of the CLCs
are around 2.0 Å. This value is as small as the minimal rmsd
taken from the 43 ligand conformers obtained by conven-
tional FSA (Figure 5b). However, in the latter case we do
not know which one of the 43 ligand conformers yields the
minimal rmsd. This demonstrates clearly how important the

information of the ligand-cluster analysis is for the construc-
tion of cluster-specific CLCs.

H: Visualizing the HIV-P Ligand Clusters. Structure
alignments of HIV-P ligands were performed for the BLCs
and for conformers obtained by pairwise FSA. Two different
pairwise rigid-structure alignment (RSA) methods were used
for the ligand conformers from the crystal structures: (i)
ligand conformer-based RSA using the pairwise FSA ma-
chinery with rigid torsion angles to align the BLCs; (ii)
protein structure-based RSA using the Kabsch algorithm56,57

to align the HIV-P crystal structures (without considering
the ligands) by minimizing the rmsd, applying the resulting
translation and rotation transforms to superimpose the
corresponding ligands on their bound conformers. The results
of the protein structure-based RSA are depicted in the first
row of Figure 8 which shows the overlaid ligand structures
for the four different ligand clusters found by analyzing the
FSA results. The blue and green clusters contain 13 and 5
small ligands, while the orange and red clusters contain 11
and 15 large ligands, respectively.

For the ligand conformer-based RSA, the transforms
(translations and rotations) necessary to perform the
structural overlay of ligands are obtained by the same
method used to generate CLCs for a set of ligand
conformers as described in part S9 of the Supporting
Information. The results of this structure alignment are
shown in the second row of Figure 8.

The first two rows in Figure 8 display structure overlays
of the HIV-P ligand conformers as they appear in the crystal
structures obtained through the two different overlay tech-
niques discussed above. The third row of Figure 8 shows
the results of structural overlay of HIV-P ligands, where the
ligand conformers were generated by the FSA method
without any information from the HIV-P crystal structures.
Here, we consider the cluster-specific CLCs obtained by the
FSA method as described in preceding part G. The results
of these structure overlays are strikingly similar to the RSA
of the ligand conformers of the crystal structures of the first
two rows of Figure 8. This finding demonstrates again the
feasibility of the FSA approach determining the ligand
conformers in the protein binding pocket without using
knowledge on the protein structure.

The last row of Figure 8 summarizes schematically the
similarity pattern of the HIV-P ligand conformers in the
four different clusters derived by the FSA procedure.
The most relevant H-bonds, which characterize the four
different binding modes of the HIV-P ligands, are also
indicated. It is interesting that the natural substrate
peptides, which are cleaved by HIV-P, all belong to the
red ligand cluster (right column in Figure 8), which
possesses the most complex binding mode. The other
HIV-P ligands belonging to the red cluster have the same
binding mode found by an analysis of the H-bond pattern
of the crystal structures (Table 2) and thus possess the
same conformation. Moreover, ligands from the same
cluster often possess chemically similar scaffolds, as
evident from the chemical composition of the HIV-P
ligands displayed in Table SII of the Supporting Informa-
tion. Hence, for HIV-P ligands, differences in ligand
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binding modes also correlate with differences in ligand
scaffolds. If this is a general feature of ligands, it will be
more difficult to find new drugs possessing different
scaffolds.103

Conclusions

In the present study we used MD simulations on ligand
pairs from a set of ligands binding to the same target
protein to perform flexible structure alignment (FSA). To
make this procedure feasible, we used a specialized energy
function. While it includes conventional intramolecular
interactions, the true intermolecular interactions are
replaced by attractive interactions derived from similarity
measures accounting for volume/shape, atomic partial
charges, and electrostatic potential of the ligands. These
attractive terms allow equivalent molecular groups from
a pair of flexible ligands to be superimposed, yielding
consensus ligand conformers (CLC) that are most similar
to each other. The assumption of the FSA approach is
that the CLCs contain information on the true bound ligand
conformer (BLC). Thus, if a sufficient number of ligands
of different chemical architecture binding to the same
target are available, it should be possible to obtain
approximate BLCs without using any experimental struc-
tural information of the target protein.

We explored the FSA approach using a test set of 44
HIV-P crystal structures. For HIV-P, we have nowadays
one of the largest databases of protein-ligand structures
comprising many chemically diverse ligands. Since this
database was 10 years ago only half as large, this study
could not have been performed much earlier (see Figure
S7).

Analyzing the similarity of the HIV-P ligand conformers
obtained from the pairwise FSA, we found four different
ligand clusters. There are two clusters of small and two
clusters of large ligands. Ligands belonging to the same
cluster exhibit similar backbone architecture. The five natural
substrate oligopeptides all belong to the same cluster of large
ligands. The four clusters agree well with a classification
based on H-bond pattern of the ligands in the HIV-P binding
pocket.

RMSDs of HIV-P ligands averaged over MD trajectories
of independent ligands are 4 Å, if measured relative to
the bound ligand conformers (BLCs) in the crystal
structure. Even for closest approach to the BLCs in these
MD trajectories the RMDSs are still 3 Å. In contrast, the
consensus ligand conformers (CLCs) agree well with the
BLC of the crystal structures with an rmsd of about 2 Å.
Hence, the present approach of indirect drug design offers
a possibility to generate coordinates of the BLCs without
using any structural information from the target of the
ligand. The application to 44 HIV-P ligands demonstrated
that the procedure works well although the ligands possess
four different binding modes. The ensemble of coordinates
of CLCs belonging to the same binding mode that are
generated by the present FSA approach approximate the
true BLCs. In order that the FSA approach of indirect
drug design presented in this study can work, one needs
several (say five or more) ligands of different chemical

architecture binding to the same target that possess the
same binding mode as for instance the case for the
considered 44 HIV-P ligands. In combination with the
chemical composition (i.e., electrostatics, H-bond pattern,
and hydrophobicity) of the ligands, the ensemble of CLCs
can be used to define pharmacophores, thus opening
alternative ways for drug design.
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